Asilomar Conference on Signals, Systems, and Computers

Quantized Compressed Sensing with Score-based Generative Models

¹Zhejiang University, China ² The University of Tokyo, Japan October 31, 2023

<u>Xiangming Meng¹</u>, Yoshiyuki, Kabashima²

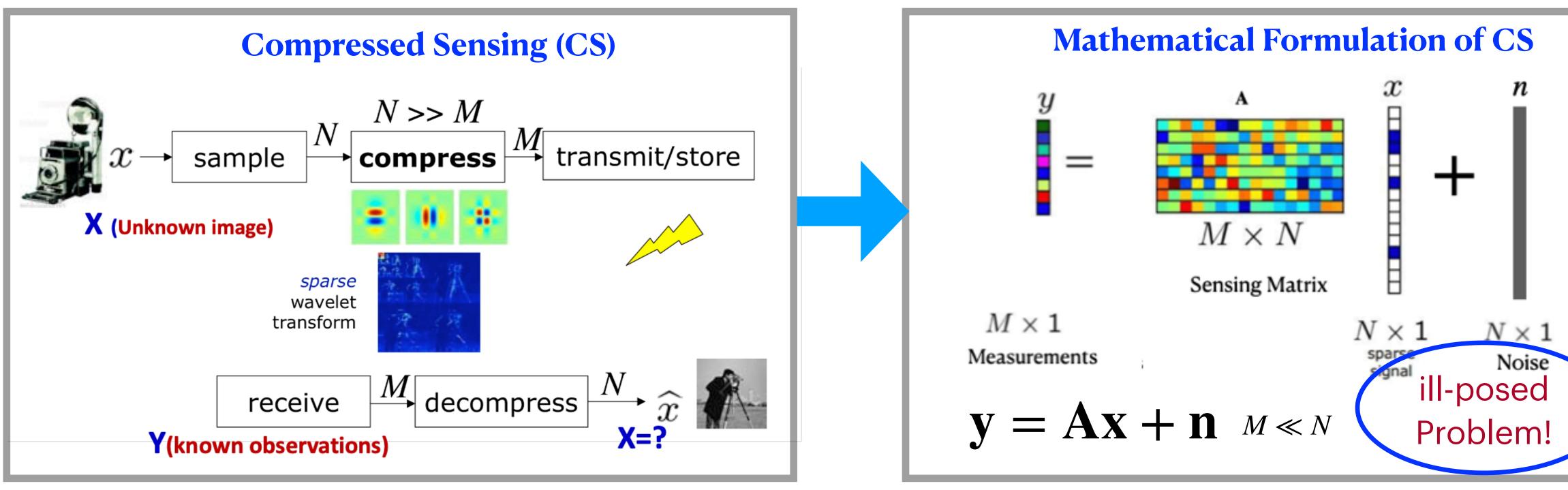
Yoshiyuki Kabashima The University of Tokyo

Contents

Background: Quantized Compressed Sensing

- Generative Models: Score-based Generative Models (SGM)
- QCS-SGM: Quantized Compressed Sensing with SGM
- QCS-SGM+: Improved QCS-SGM for general sensing matrices

Compressed Sensing



•Goal: Recover a *sparse* or *compressible* signal from $M \ll N$ measurements

•Solution: Exploit the sparsity as regularization, e.g, L1 regularization

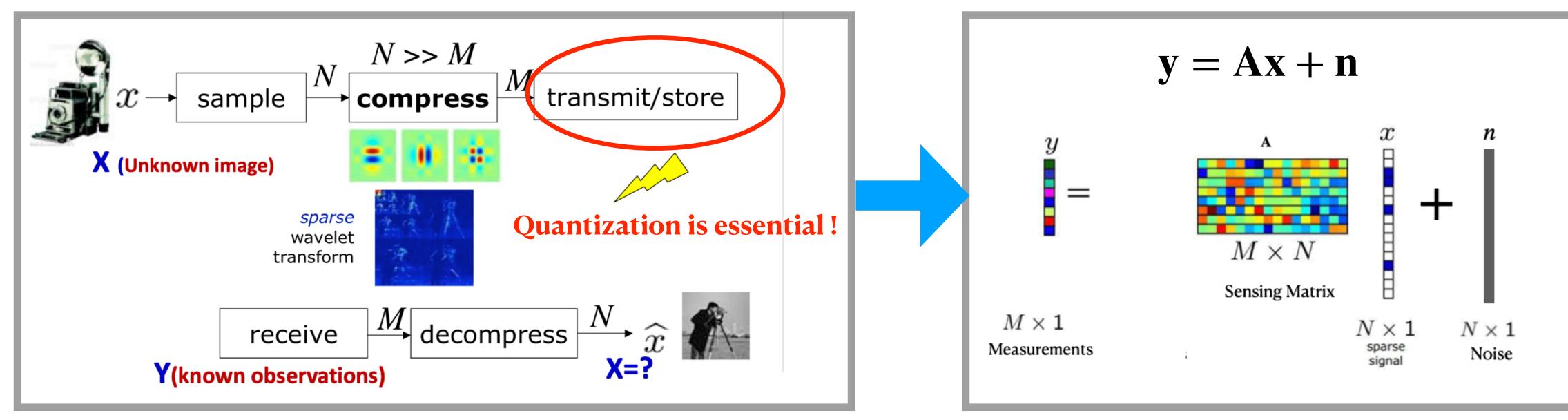
•**Theoretical guarantee** [Candes-Romberg-Tao2006]

Credit https://www.raeng.org.uk/publications/other/candes-presentation-frontiers-of-engineering

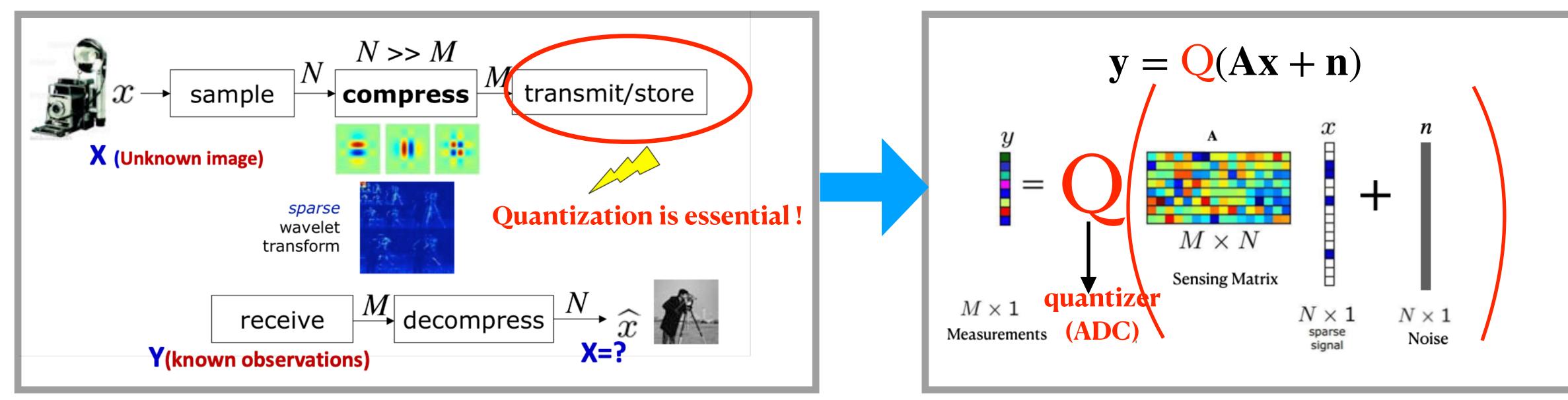
Candes Romberg

Tao

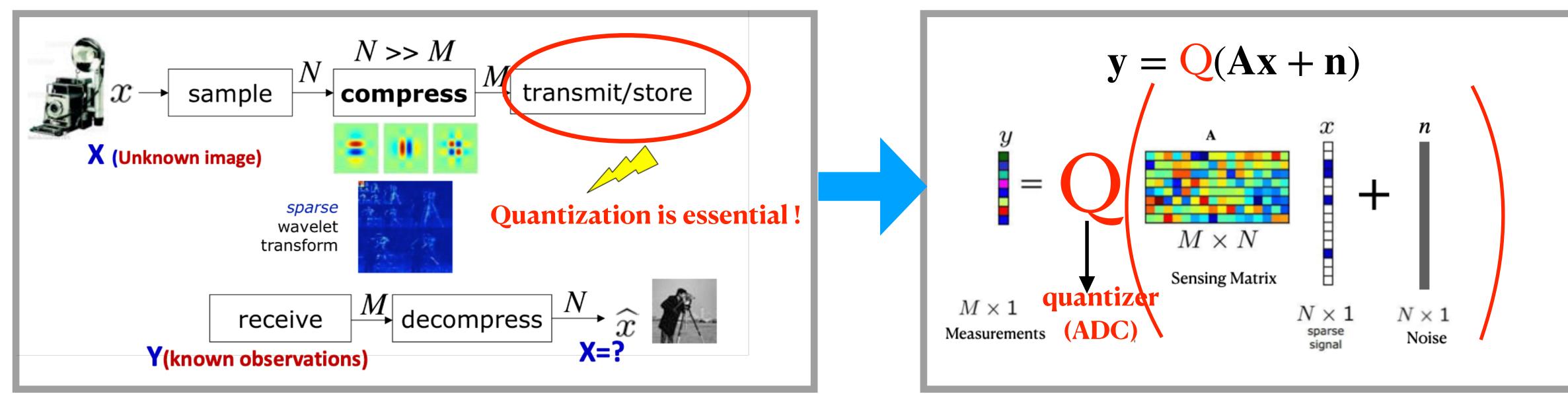
Quantized Compressed Sensing



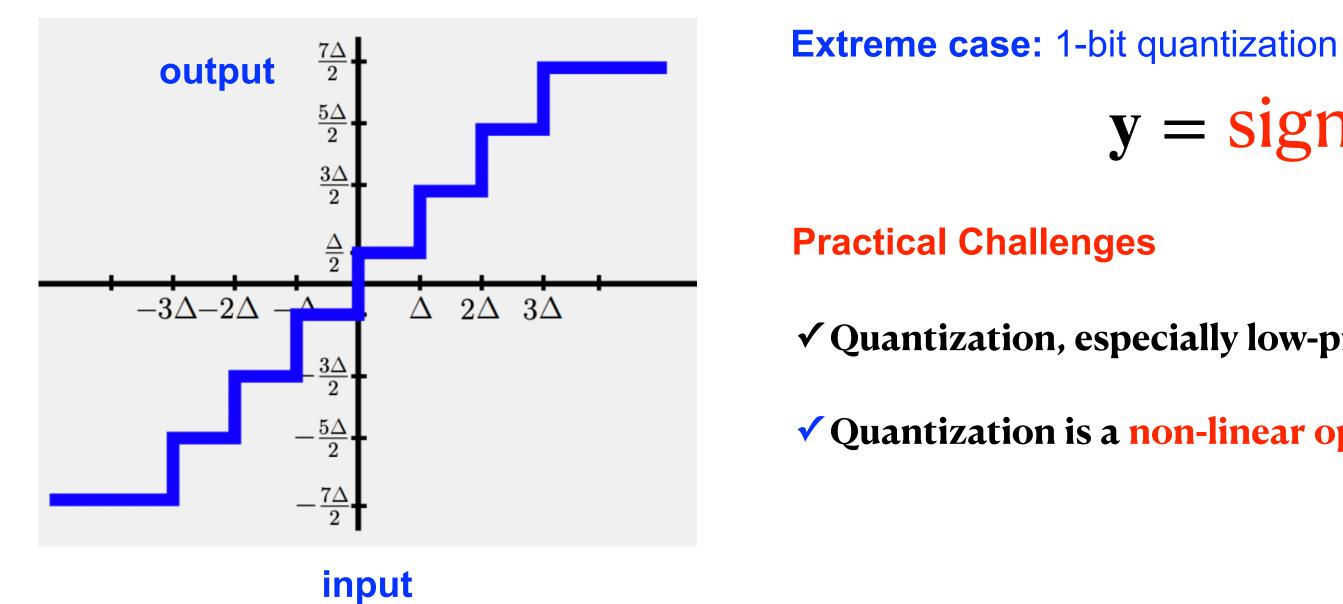
Quantized Compressed Sensing



Quantized Compressed Sensing



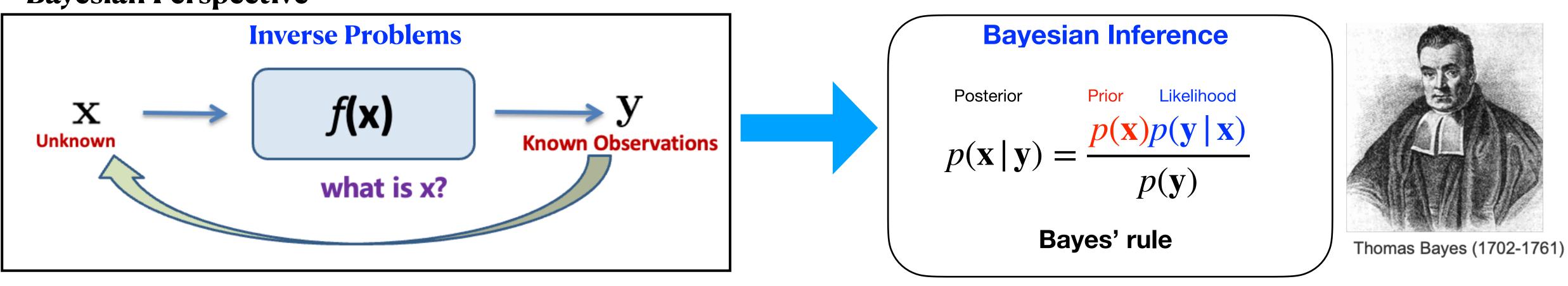
• Quantizer (ADC converter)



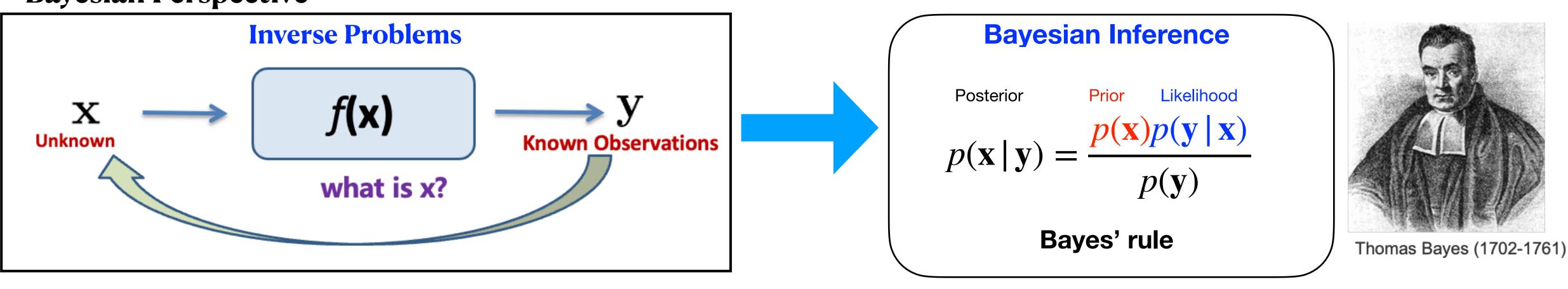
$$\mathbf{y} = \mathbf{sign}(\mathbf{A}\mathbf{x} + \mathbf{n}) \in \{-1, +1\}^M$$

- ✓ Quantization, especially low-precision quantization, leads to severe information loss
- ✓ Quantization is a non-linear operation, which makes the linear algorithms no longer work

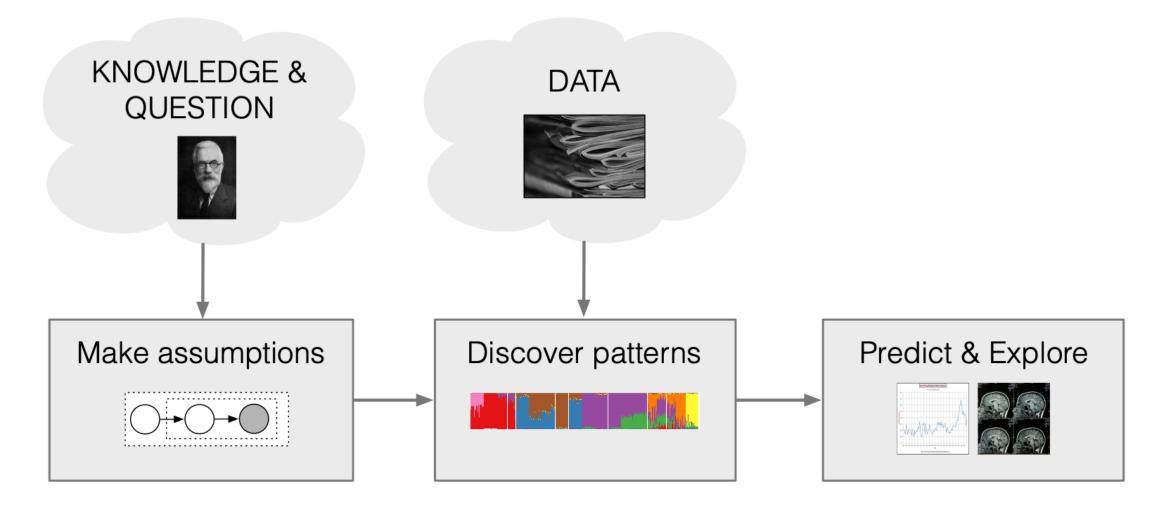
Bayesian Perspective



Bayesian Perspective



Why Bayesian?



Bayesian Learning Framework [David Blei 2016]

Structure Constraint as Prior Distribution

- The standard L1 sparsity can be viewed as a Laplace prior
- More complicated prior, e.g., structured sparsity, and low-rankness can be used to improve performance.
- 3. However, hand-crafted priors might still fail to capture the rich structure in natural signals.

The more you know a priori the less you need!

You can easily recognize someone you are familiar with at one single sight

The more you know a priori the less you need!

Learn a good prior using powerful deep generative models

You can easily recognize someone you are familiar with at one single sight

How to obtain a good prior knowledge?

Contents

Background: Quantized Compressed Sensing

Generative Models: Score-based Generative Models (SGM)

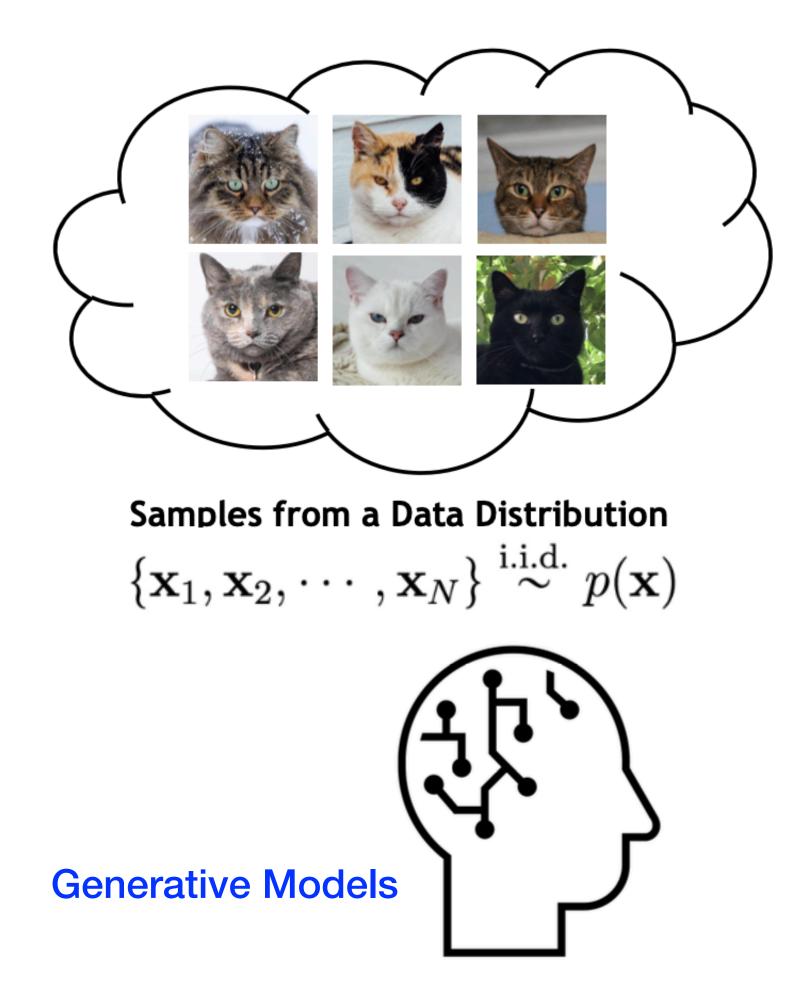
- QCS-SGM: Quantized Compressed Sensing with SGM
- QCS-SGM+: Improved QCS-SGM for general sensing matrices

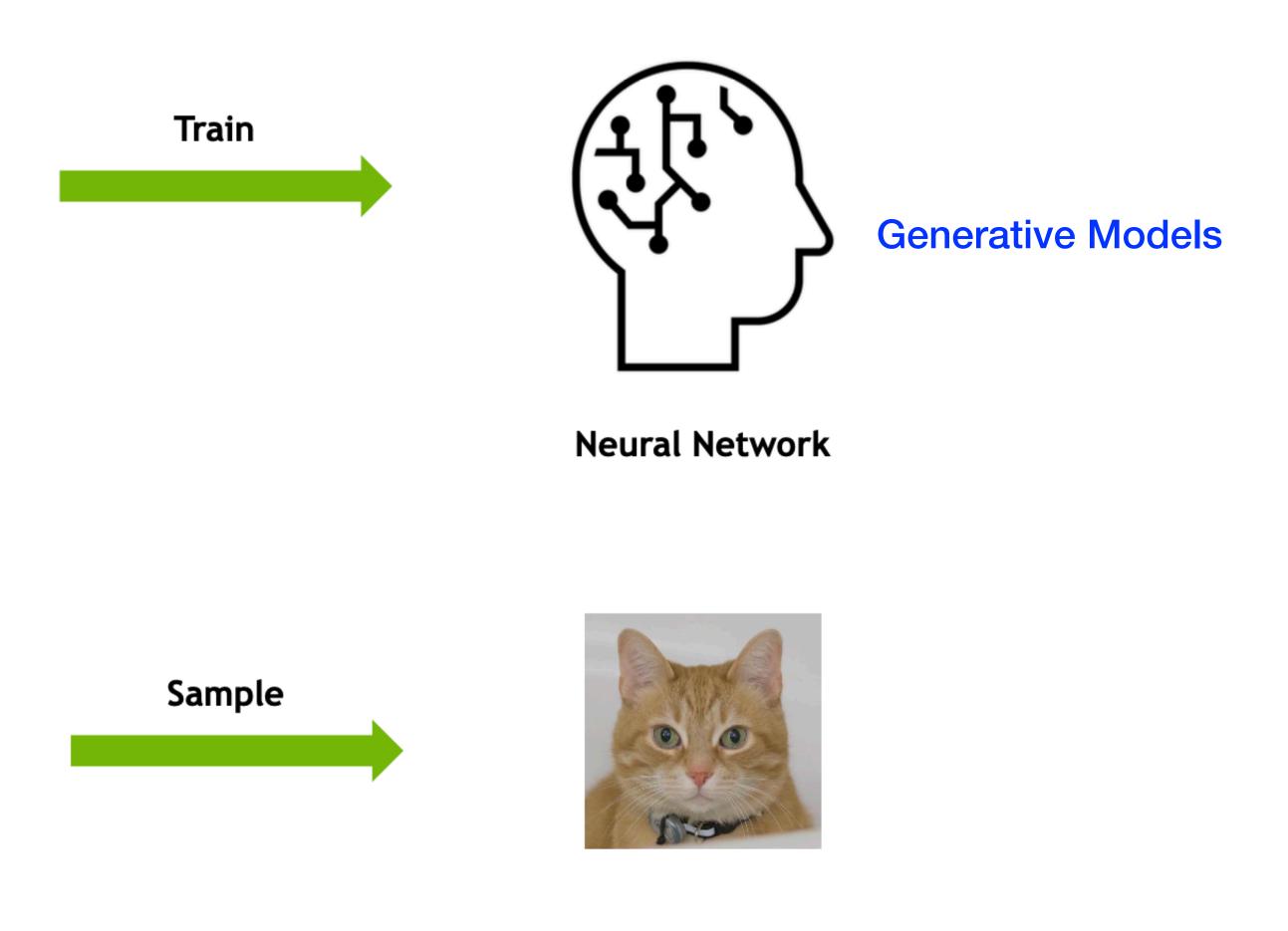
11

Generative Models

Deep Generative Models

"What I cannot create, I do not understand" ——Richard Feynman

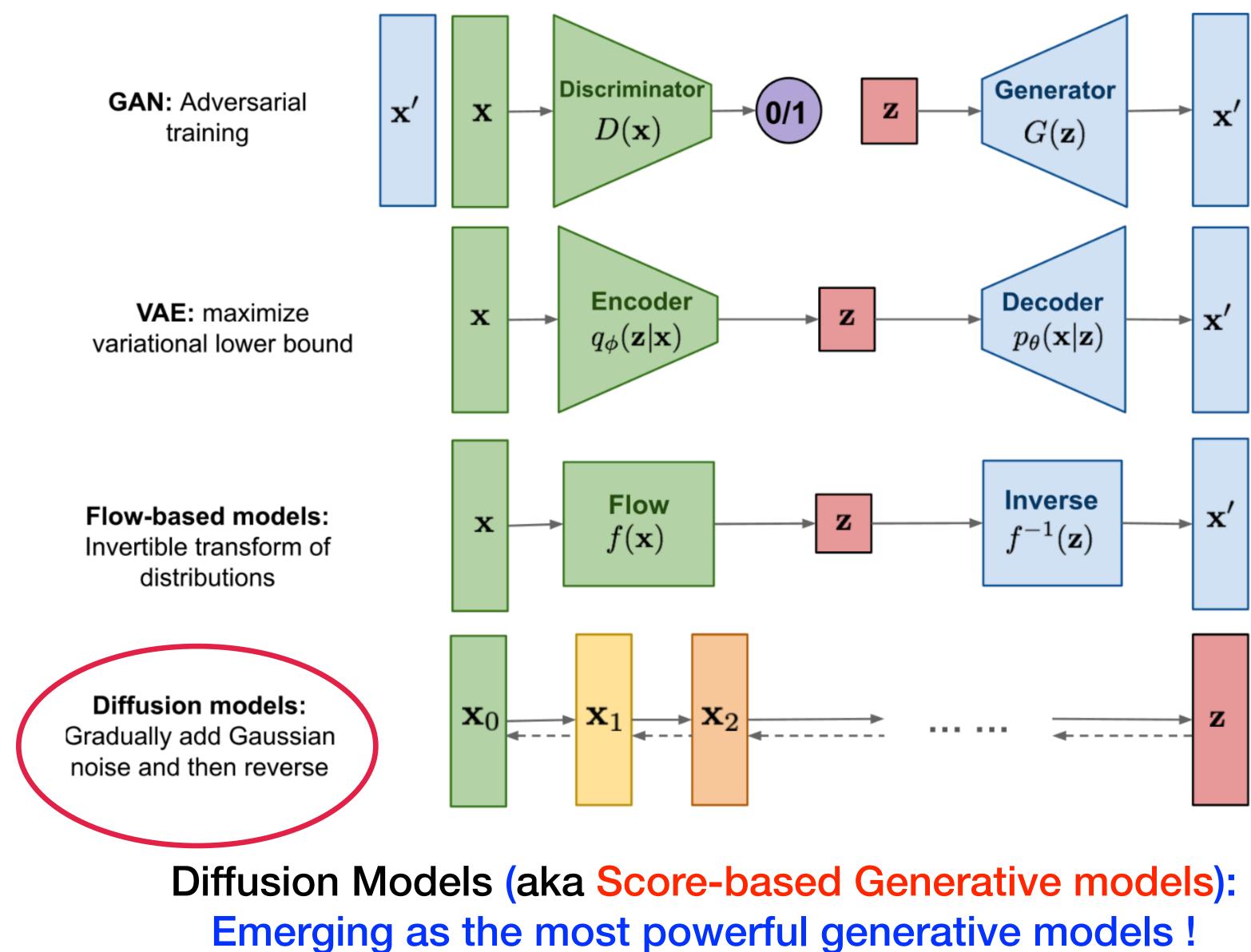




Generative Learning

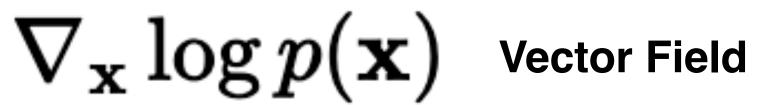
Generative Models

Overview of different types of generative models



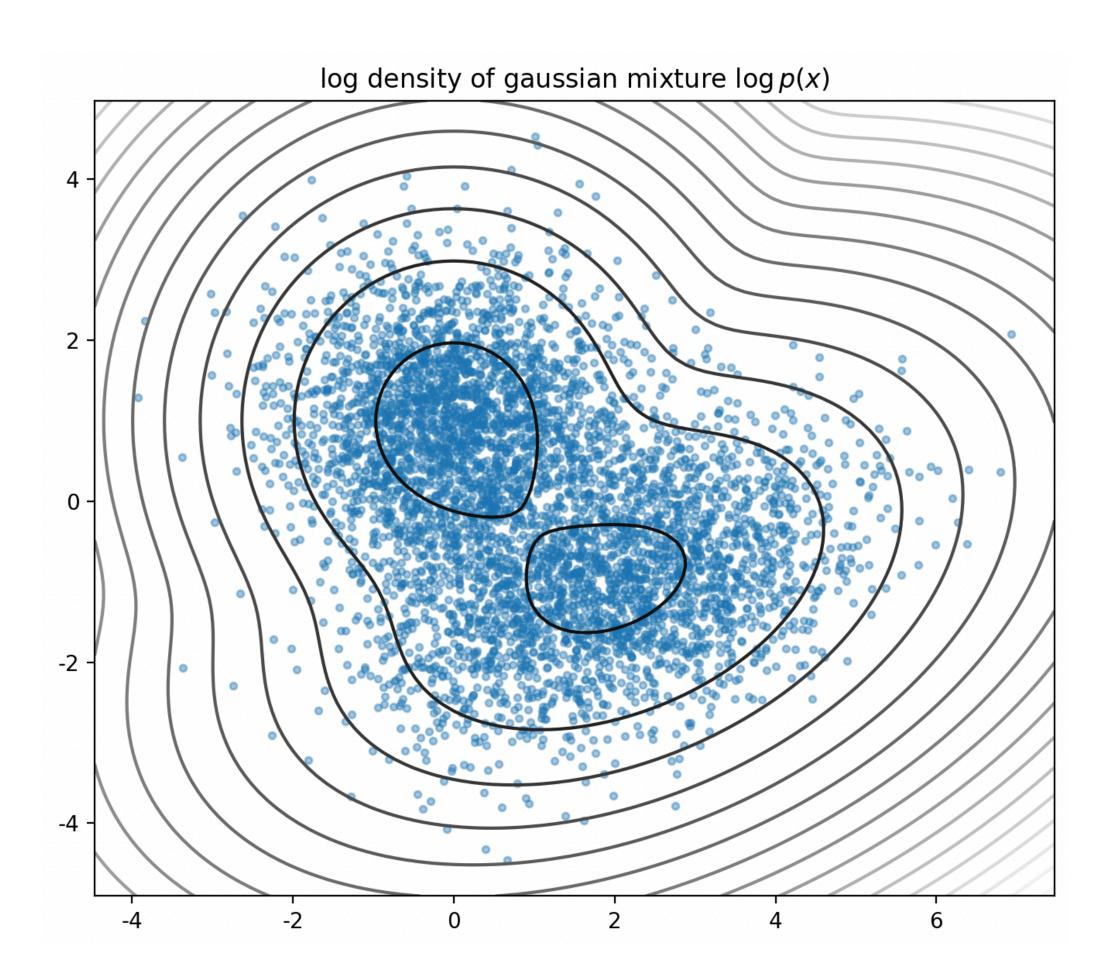
Score-based Generative Models (SGM)

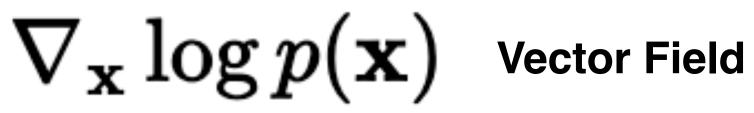
To model the gradient of the log probability density function, known as the (Stein) score function

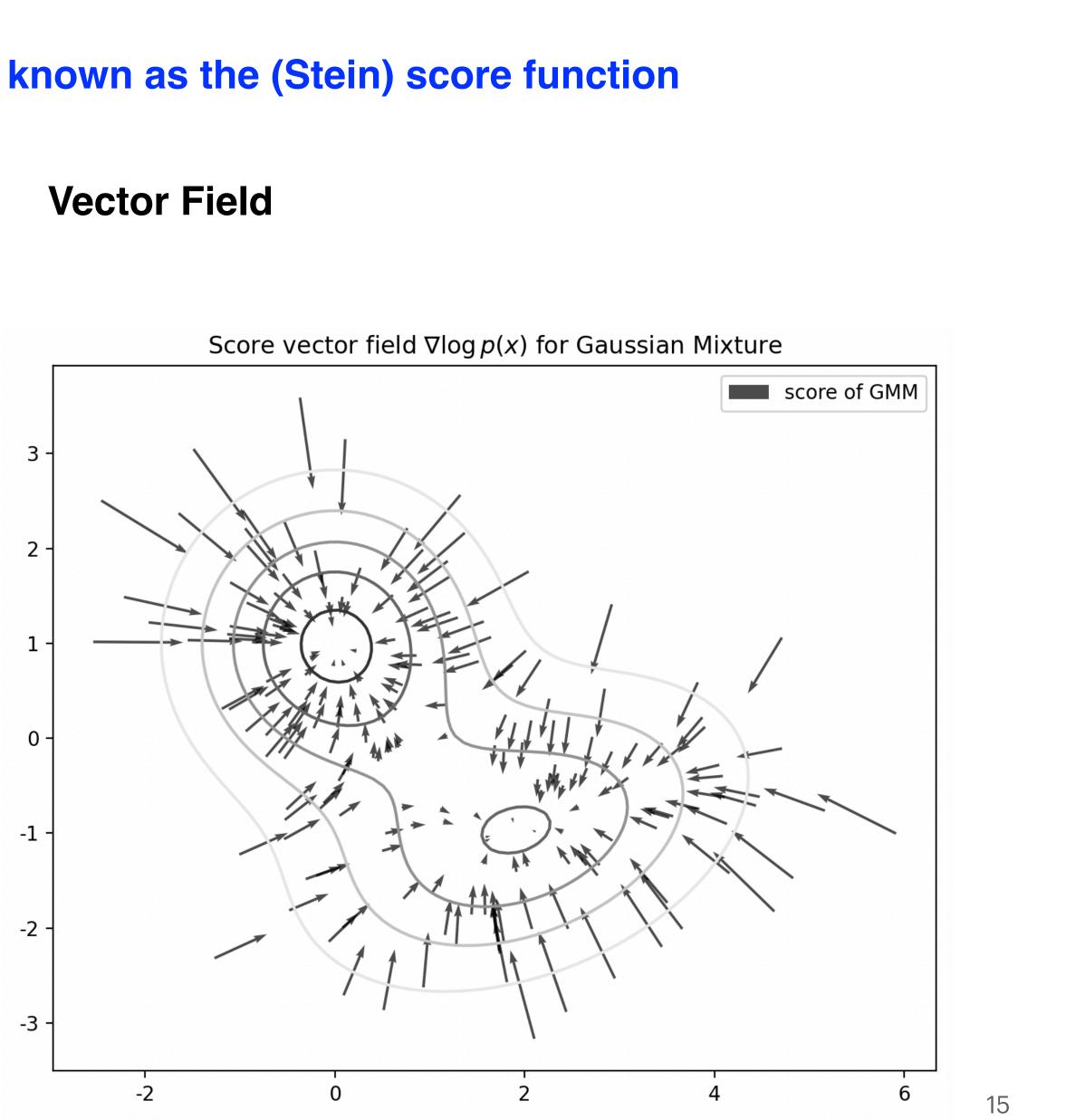


Score-based Generative Models (SGM)

To model the gradient of the log probability density function, known as the (Stein) score function



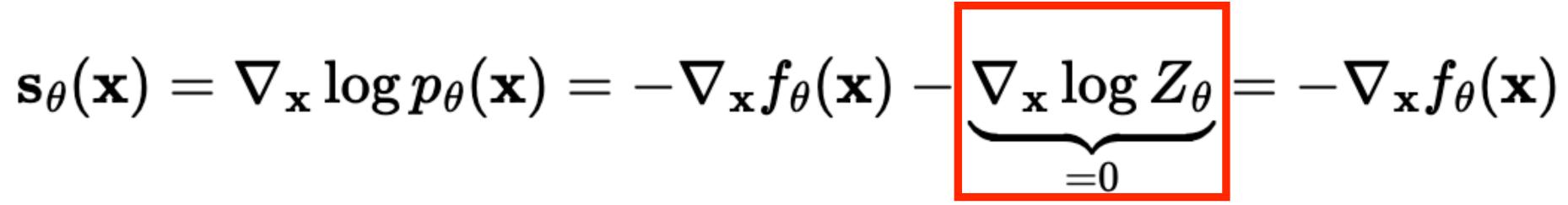




Why caring about score functions?

Avoiding the difficulty of intractable normalizing constants.

$$p_{ heta}(\mathbf{x}) = rac{e^{-f_{ heta}(\mathbf{x})}}{Z_{ heta}} \quad Z_{ heta} = \int e^{-f_{ heta}(\mathbf{x})}$$



Why caring about score functions?

Avoiding the difficulty of intractable normalizing constants.

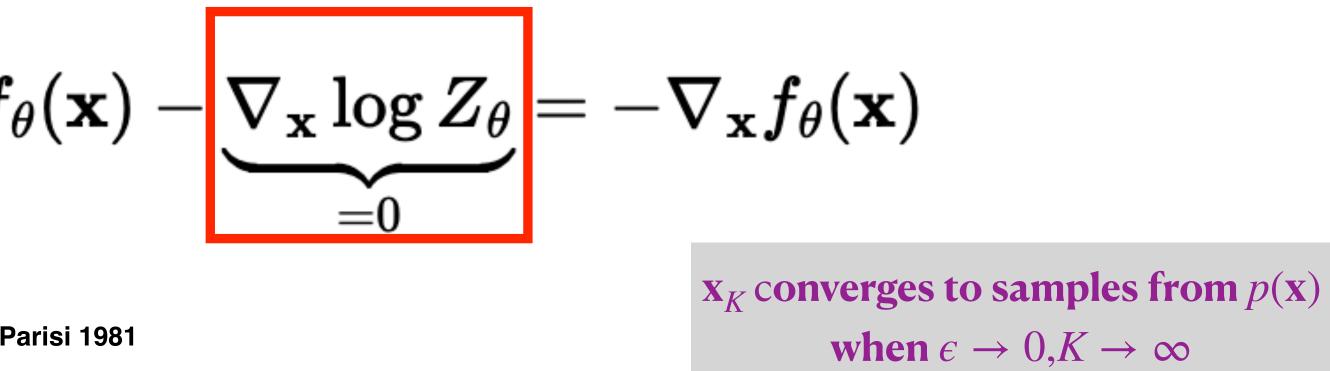
$$p_{ heta}(\mathbf{x}) = rac{e^{-f_{ heta}(\mathbf{x})}}{Z_{ heta}} \quad Z_{ heta} = \int e^{-f_{ heta}(\mathbf{x})}$$

$$\mathbf{s}_{ heta}(\mathbf{x}) =
abla_{\mathbf{x}} \log p_{ heta}(\mathbf{x}) = -
abla_{\mathbf{x}} f_{ heta}$$

• Enabling sampling using Langevin dynamics G. Parisi 1981

$$\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i + \epsilon
abla_{\mathbf{x}} \log p(\mathbf{x}) + \sqrt{2\epsilon} \ \mathbf{z}_i,$$

 $f_{\theta}(\mathbf{x}) d\mathbf{x}$



 $i=0,1,\cdots,K$ $\mathbf{z}_i\sim\mathcal{N}(0,I)$

Why caring about score functions?

Avoiding the difficulty of intractable normalizing constants.

$$p_{ heta}(\mathbf{x}) = rac{e^{-f_{ heta}(\mathbf{x})}}{Z_{ heta}} \quad Z_{ heta} = \int e^{-f_{ heta}(\mathbf{x})}$$

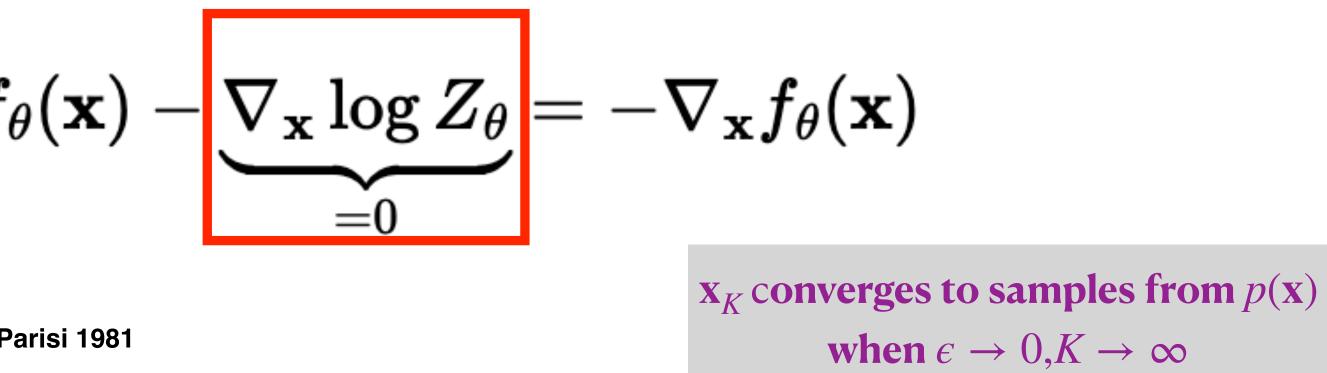
$$\mathbf{s}_{ heta}(\mathbf{x}) =
abla_{\mathbf{x}} \log p_{ heta}(\mathbf{x}) = -
abla_{\mathbf{x}} f_{ heta}$$

• Enabling sampling using Langevin dynamics G. Parisi 1981

$$\mathbf{x}_{i+1} \leftarrow \mathbf{x}_i + \epsilon
abla_{\mathbf{x}} \log p(\mathbf{x}) + \sqrt{2\epsilon} \mathbf{z}_i,$$

How to obtain the score function?

 $f_{\theta}(\mathbf{x}) d\mathbf{x}$



 $i=0,1,\cdots,K$ $\mathbf{z}_i\sim\mathcal{N}(0,I)$.

Noise Perturbed Score-Matching Song et al 2019

$$p_{\beta_t}(\mathbf{x}_t) = \int p$$

Annealing: using multiple noise scales $\{\beta_t\}_{t=1}^T$ for the perturbation! $\mathbf{X}_t = \mathbf{X} + \beta_t \mathbf{Z}$ $0 < \beta_1 < \beta_2 < \dots < \beta_T$

 $p(\mathbf{x})N(\mathbf{x}_t | \mathbf{x}, \beta_t^2)d\mathbf{x}$

Noise Perturbed Score-Matching Song et al 2019

$$p_{\beta_t}(\mathbf{x}_t) = \int p(\mathbf{x}) N(\mathbf{x}_t | \mathbf{x}, \beta_t^2) d\mathbf{x}$$

Noise Conditional Score Network (NCSN)

$$\mathbf{s}_{\theta}(\mathbf{x}_{t},t) \approx$$

Estimated Score

t = 1

Loss function:

Annealing: using multiple noise scales $\{\beta_t\}_{t=1}^T$ for the perturbation! $\mathbf{X}_t = \mathbf{X} + \beta_t \mathbf{Z}$ $0 < \beta_1 < \beta_2 < \dots < \beta_T$

Using neural network to estimate the score $\nabla_{\mathbf{x}_t} \log p_{\beta_t}(\mathbf{x}_t)$ of each noise-perturbed distribution $p_{\beta_t}(\mathbf{x}_t)$

$$\nabla_{\mathbf{x}_t} \log p_{\beta_t}(\mathbf{x}_t) \ \forall t$$

True Score

$$\sum \lambda_t \mathbf{E}_{p_{\beta_t}(\mathbf{x}_t)} \| \nabla_{\mathbf{x}_t} \log p_{\beta_t}(\mathbf{x}_t) - \mathbf{s}_{\theta}(\mathbf{x}_t, t) \|^2$$

A Big Picture

X_t Forward

Data

Forward Process

 $\mathbf{x}_t = \mathbf{x}_0 + \beta_t \mathbf{z}_t$

Forward diffusion process (fixed)

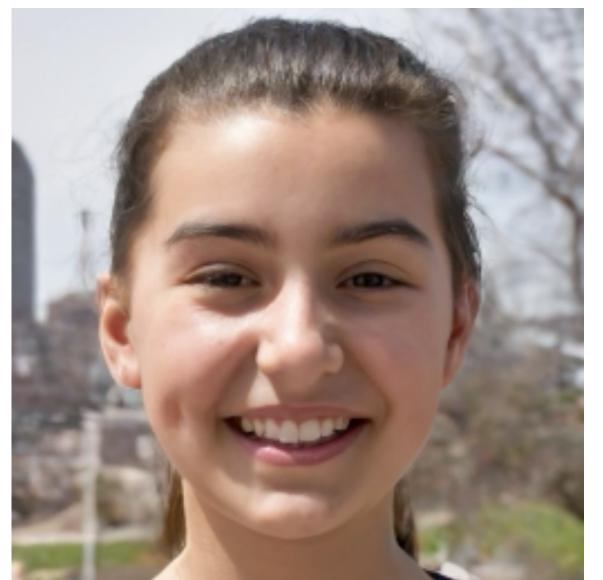
 $0 < \beta_1 < \beta_2 < \cdots < \beta_T$

A sequence of noise levels

Noise

A Big Picture

Data



Reverse denoising process (generative) $\mathbf{x}_{t-1}^k = \mathbf{x}_t^k + \alpha_t \nabla_{\mathbf{x}_t} \log p_{\beta_t}(\mathbf{x}_t) + \sqrt{2\alpha_t} \mathbf{z}_t^k$ **Score function**

Approximated by neural network $\mathbf{S}_{\theta}(\mathbf{X}_{t},t)$

 $\mathbf{x}_t = \mathbf{x}_0 + \beta_t \mathbf{z}_t$

Forward diffusion process (fixed)

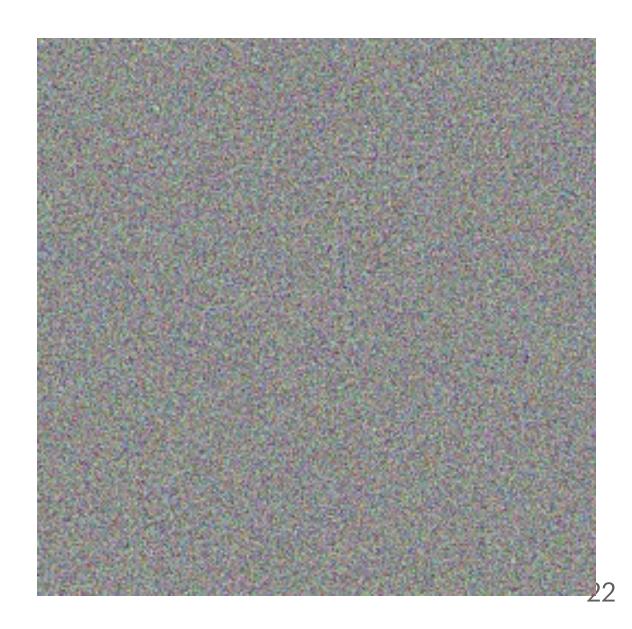
 $0 < \beta_1 < \beta_2 < \cdots < \beta_T$

A sequence of noise levels

Noise

Annealed Langevin dynamics

Reverse Process



Connection to denoising diffusion probabilistic models (DDPM)

$$\mathbf{x}_t = \sqrt{\alpha_t} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}_{t-1} \qquad \alpha_1 > \alpha_2 > \cdots > \alpha_T > 0$$

Forward diffusion process (fixed)

Data

The forward noise ϵ_t is estimated by a denoting network $\epsilon_{\theta}(\mathbf{x}_t, t)$

Reverse denoising process (generative)

DDPM loss:
$$L_t^{\text{simple}} = \mathbb{E}_{t \sim [1,T], \mathbf{x}_0, \epsilon_t} \Big[\| \boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \|^2 \Big]$$

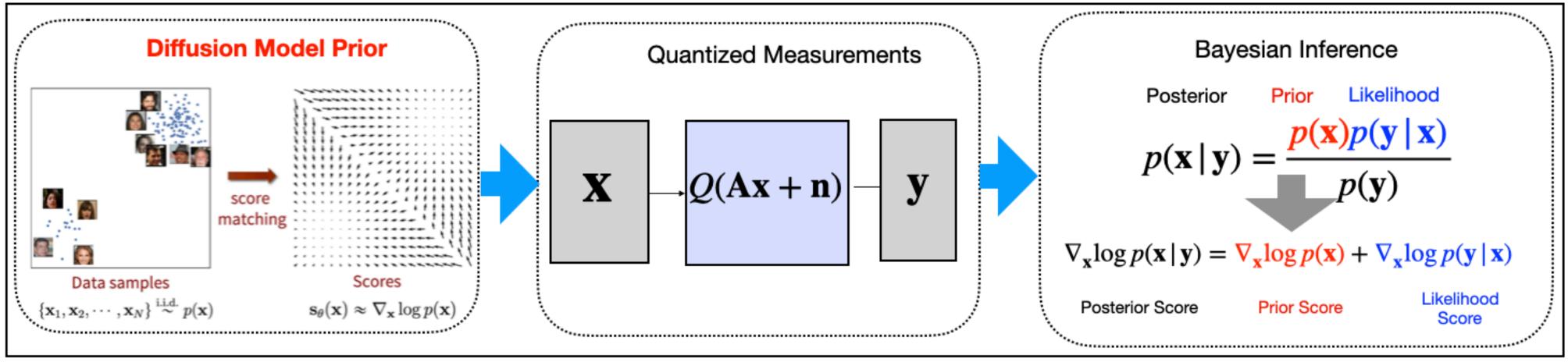
After some reformulation
Score Matching Loss $L_{\text{SM}} = \mathbf{E}_{t, \mathbf{x}, \mathbf{x}_t} \| \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) - \mathbf{s}_{\theta}(\mathbf{x}_t, t) \|^2$

Noise

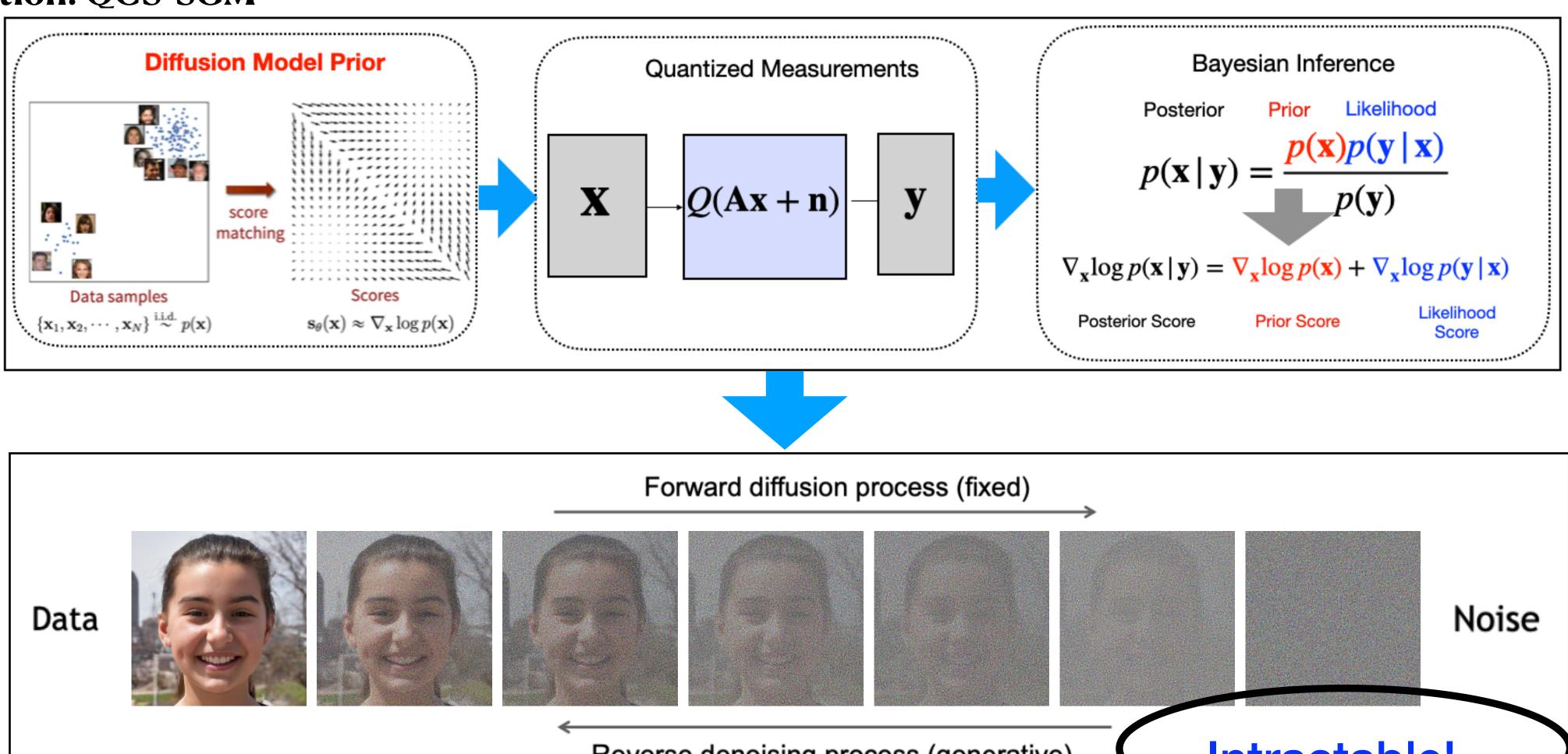
Score Estimation of $\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$ $\mathbf{S}_{\theta}(\mathbf{X}_{t}, t)$

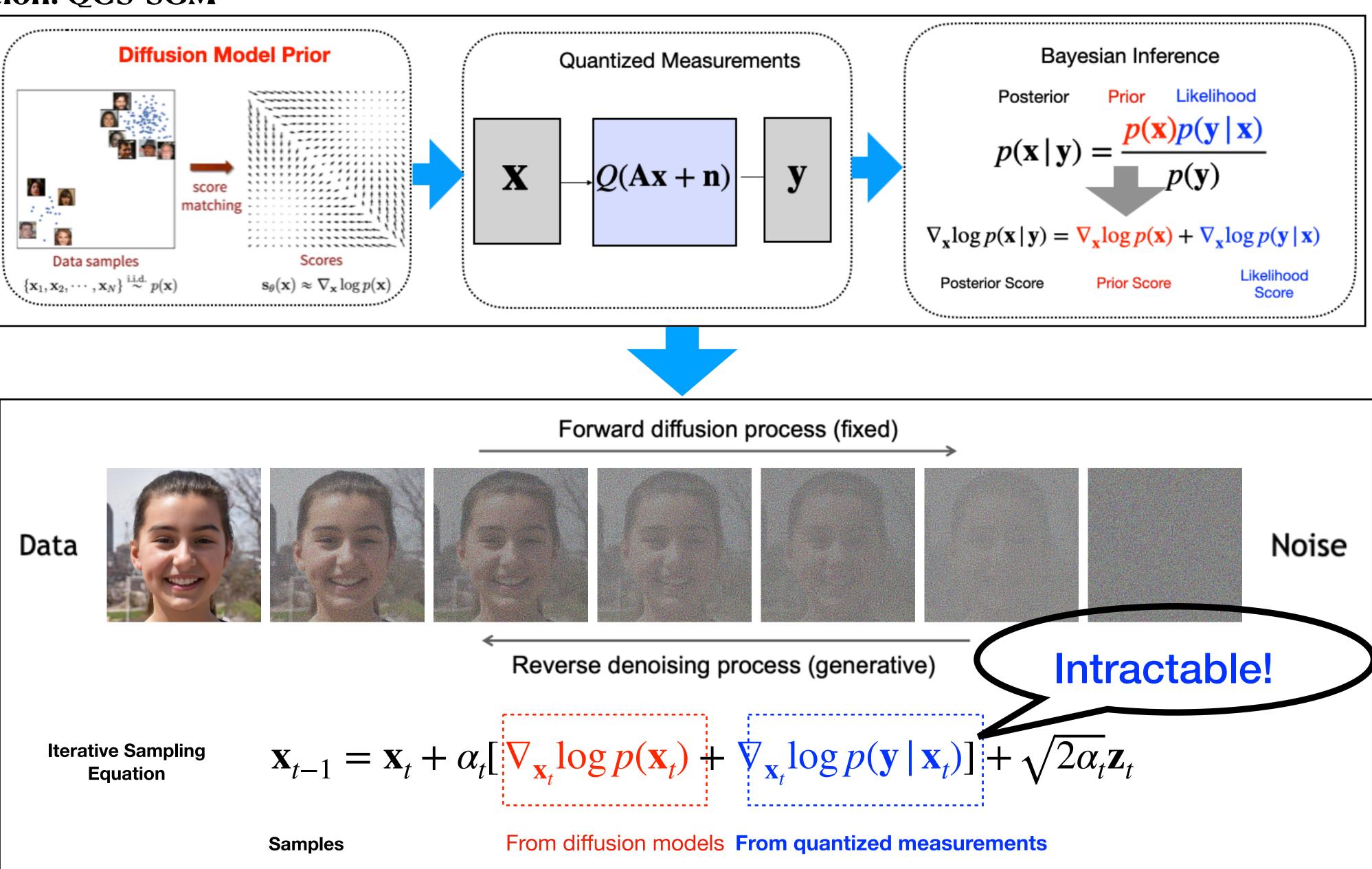
Contents

- Background: Quantized Compressed Sensing
- Generative Models: Score-based Generative Models (SGM)
- QCS-SGM: Quantized Compressed Sensing with SGM
- QCS-SGM+: Improved QCS-SGM for general sensing matrices

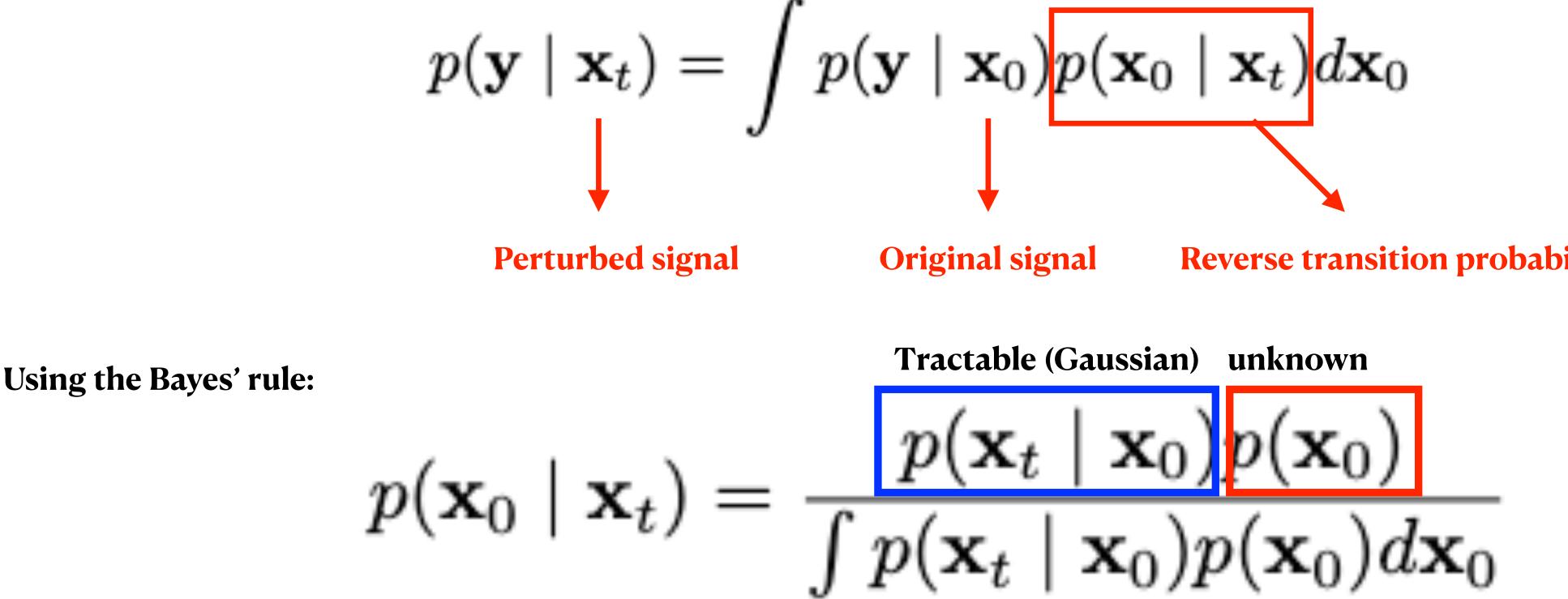


QCS-SGM: Quantized CS with SGM Our solution: QCS-SGM





QCS-SGM: Quantized CS with SGM Our solution: QCS-SGM



Note: The result is intractable even for linear model $y = Ax_0 + n$

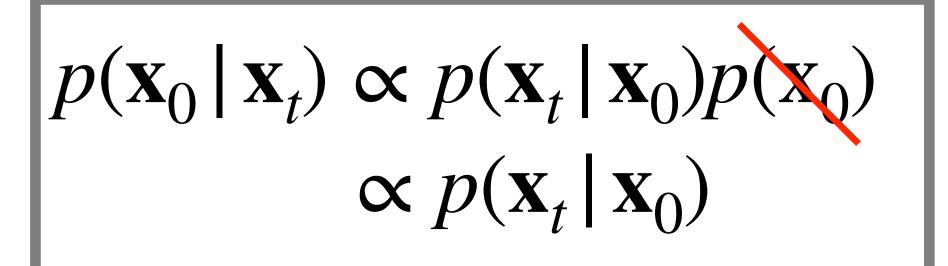
Reverse transition probability

$$\frac{p(\mathbf{x}_t \mid \mathbf{x}_0)}{p(\mathbf{x}_t \mid \mathbf{x}_0)p(\mathbf{x}_0)d\mathbf{x}_0}$$

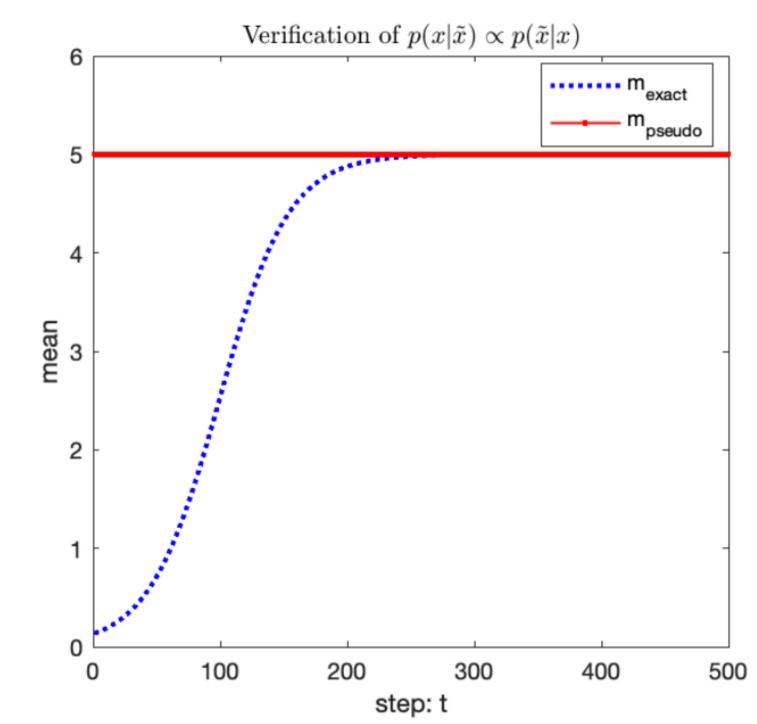
QCS-SGM: Quantized CS with SGM Two Assumptions of QCS-SGM

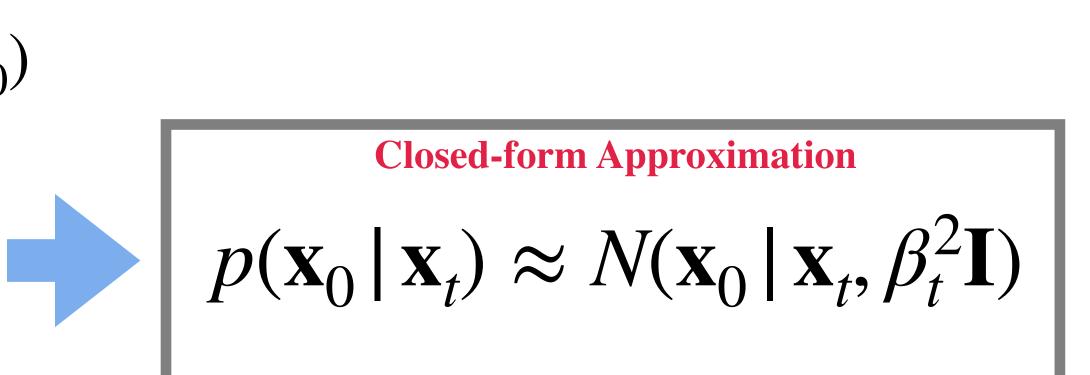
Assumption 1

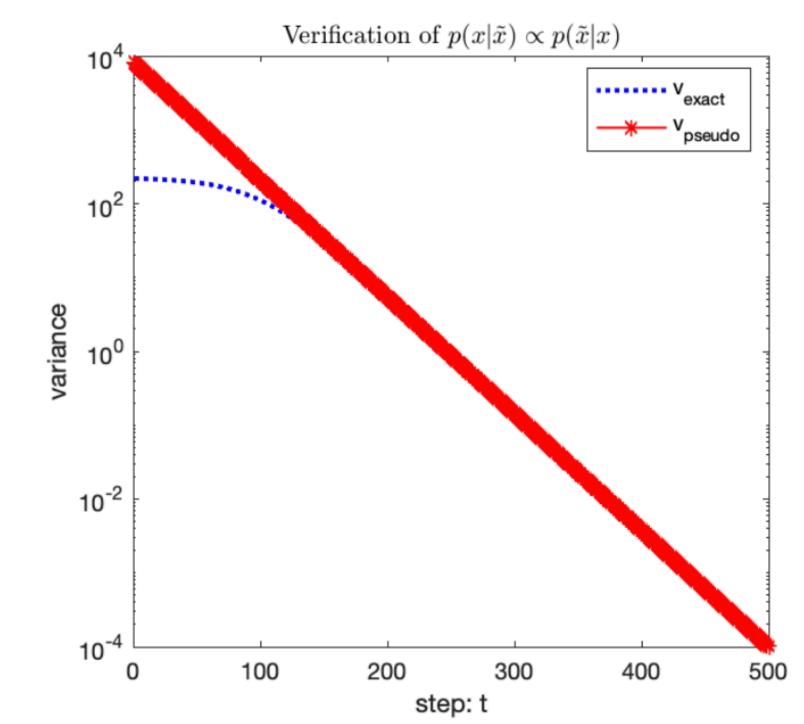
The prior $p(\mathbf{x_0})$ is non-informative w.r.t. $p(\mathbf{x_t} | \mathbf{x_0})$



Asymptotically accurate when the perturbed noise is negligible







QCS-SGM: Quantized CS with SGM Two Assumptions of QCS-SGM

Assumption 1

The prior $p(\mathbf{x_0})$ is non-informative w.r.t. $p(\mathbf{x_t} | \mathbf{x_0})$

$$p(\mathbf{x}_0 | \mathbf{x}_t) \propto p(\mathbf{x}_t | \mathbf{x}_0) p(\mathbf{x}_0)$$
$$\propto p(\mathbf{x}_t | \mathbf{x}_0)$$

• Assumption 2

Asymptotically accurate when the perturbed noise is negligible

The sensing matrix **A** is row-orthogonal, i.e.,

$$\mathbf{A}\mathbf{A}^T = \mathsf{Diag}$$

(Approximately) satisfied by many popular CS matrices e.g., DFT, DCT, Hadamard, and random Gaussian matrices, etc.

Closed-form Approximation

 $p(\mathbf{x}_0 | \mathbf{x}_t) \approx N(\mathbf{x}_0 | \mathbf{x}_t, \beta_t^2 \mathbf{I})$

gonal matrix

QCS-SGM: Quantized CS with SGM Results of Pseudo-likelihood Score

• Theorem 1: Under assumptions 1 and 2, we obtain a closed-form solution to the likelihood score

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t) = \mathbf{A}^T \mathbf{G}(\beta_t, \mathbf{y}, \mathbf{A}, \mathbf{x}_t)$$

where

 $\mathbf{G}(\beta_t, \mathbf{y}, \mathbf{A}, \mathbf{x}_t) = [g_1, g_2, \dots, g_M]^T \in \mathbb{R}^{M \times 1}$ $g_m = \frac{\exp\left(-\frac{\tilde{u}_{y_m}^2}{2}\right) - \exp\left(-\frac{\tilde{l}_{y_m}^2}{2}\right)}{\sqrt{\sigma^2 + \beta_t^2 \| \mathbf{a}_m^T \|_2^2} \int_{\tilde{l}_{y_m}}^{\tilde{u}_{y_m}} \exp\left(-\frac{t^2}{2}\right) dt} \qquad \tilde{u}_{y_m}$

• Corollary: In the special case of linear case y=Ax + n

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t) = \mathbf{A}^T (\sigma^2 \mathbf{I} + \beta_t^2 \mathbf{A} \mathbf{A}^T)^{-1} (\mathbf{y} - \mathbf{A} \mathbf{x}_t)$$

✓ Explain the necessity of annealing term in Jalal et al. (202 $\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t) = -$

✓ Extend and improve Jalal et al. (2021a) in the general case

$${}_{m} = \frac{\mathbf{a}_{m}^{T} \mathbf{x}_{t} - u_{y_{m}}}{\sqrt{\sigma^{2} + \beta_{t}^{2} \| \mathbf{a}_{m}^{T} \|_{2}^{2}}} \quad \tilde{l}_{y_{m}} = \frac{\mathbf{a}_{m}^{T} \mathbf{x}_{t} - l_{y_{m}}}{\sqrt{\sigma^{2} + \beta_{t}^{2} \| \mathbf{a}_{m}^{T} \|_{2}^{2}}}$$

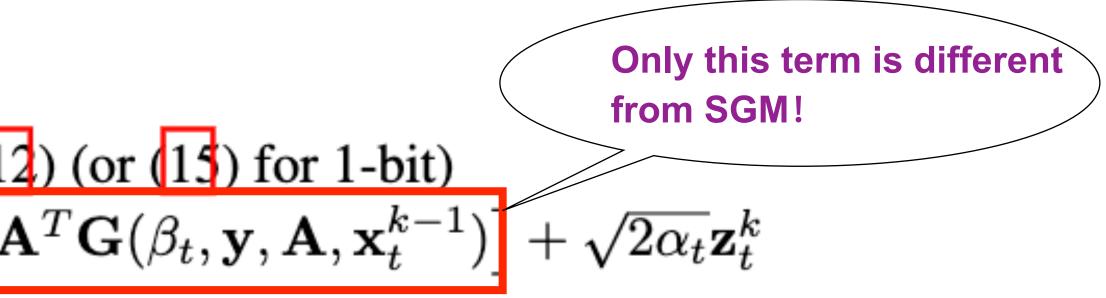
$$\frac{\mathbf{A}^{T}(\mathbf{y} - \mathbf{A}\mathbf{x}_{t})}{\sigma^{2} + \gamma_{t}^{2}}$$

Resultant Algorithm

Algorithm 1: Quantized Compressed Sensing with SGM (QCS-SGM) Initialization: $\mathbf{x}_1^0 \sim \mathcal{U}(0, 1)$ 1 for t = 1 to T do $\alpha_t \leftarrow \epsilon \beta_t^2 / \beta_T^2$ 2 for k = 1 to K do 3 Draw $\mathbf{z}_t^k \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 4 Compute $\mathbf{G}(\beta_t, \mathbf{y}, \mathbf{A}, \mathbf{x}_t^{k-1})$ as (12) (or (15) for 1-bit) $\mathbf{x}_t^k = \mathbf{x}_t^{k-1} + \alpha_t \left[\mathbf{s}_{\theta}(\mathbf{x}_t^{k-1}, \beta_t) + \mathbf{A}^T \mathbf{G}(\beta_t, \mathbf{y}, \mathbf{A}, \mathbf{x}_t^{k-1}) \right] + \sqrt{2\alpha_t} \mathbf{z}_t^k$ 5 6 $\mathbf{x}_{t+1}^0 \leftarrow \mathbf{x}_t^K$ 7 Output: $\hat{\mathbf{x}} = \mathbf{x}_T^K$

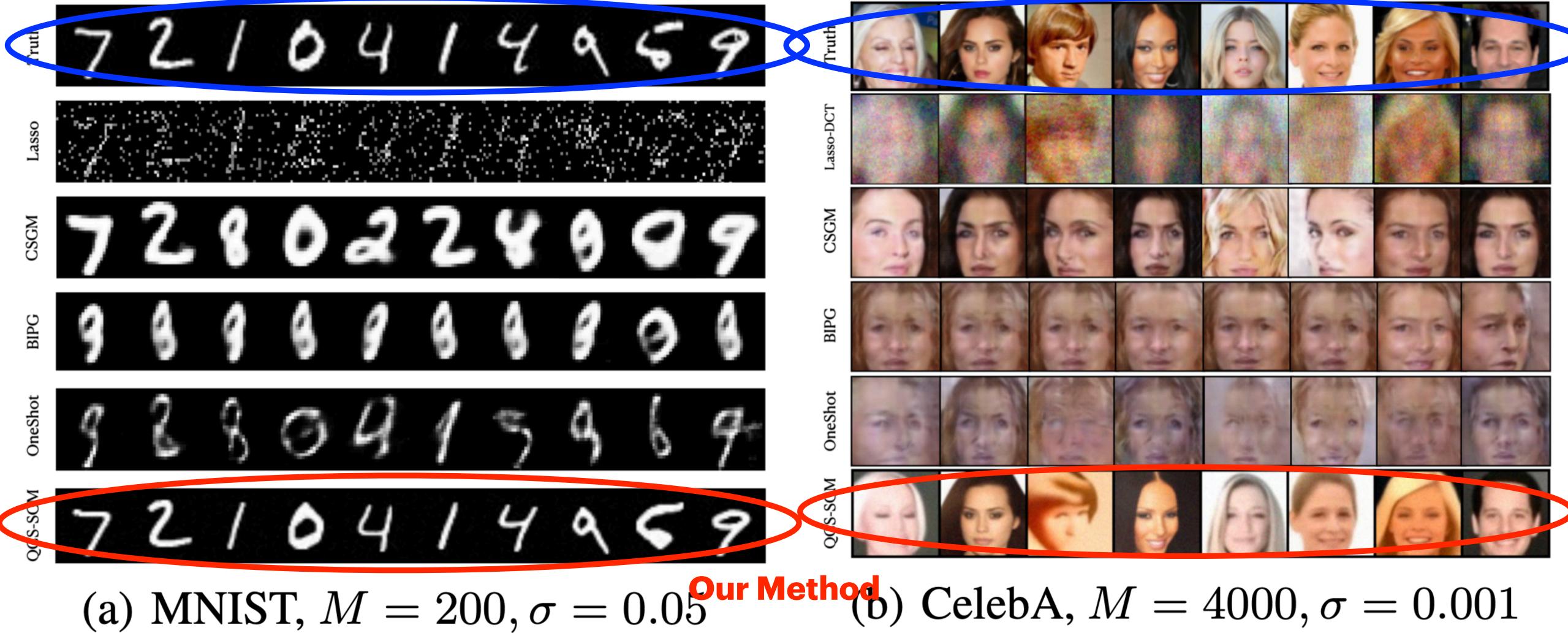
Code Available: https://github.com/mengxiangming/QCS-SGM

Input: $\{\beta_t\}_{t=1}^T, \epsilon, K, \mathbf{y}, \mathbf{A}, \sigma^2$, quantization codewords \mathcal{Q} and thresholds $\{[l_a, u_a) | q \in \mathcal{Q}\}$



Experimental Results

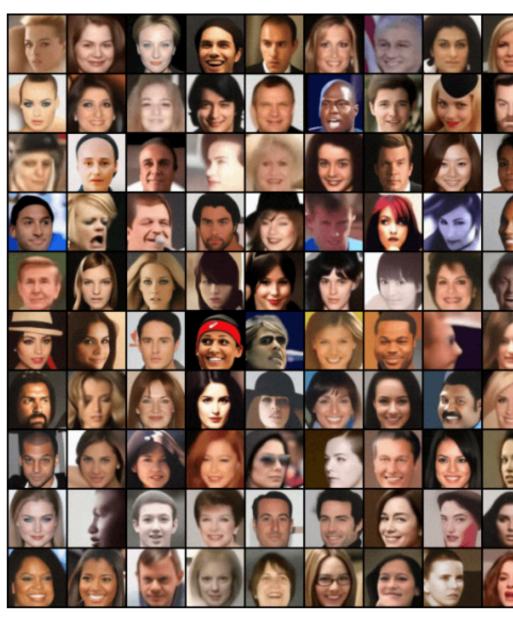
1-bit CS on MNIST 28×28 **1-bit CS** on CelebA 64×64 **Ground Truth**



The proposed QCS-SGM achieves remarkably better performances

Experimental Results

(a) Ground Truth



(c) 2-bit, M = 6144

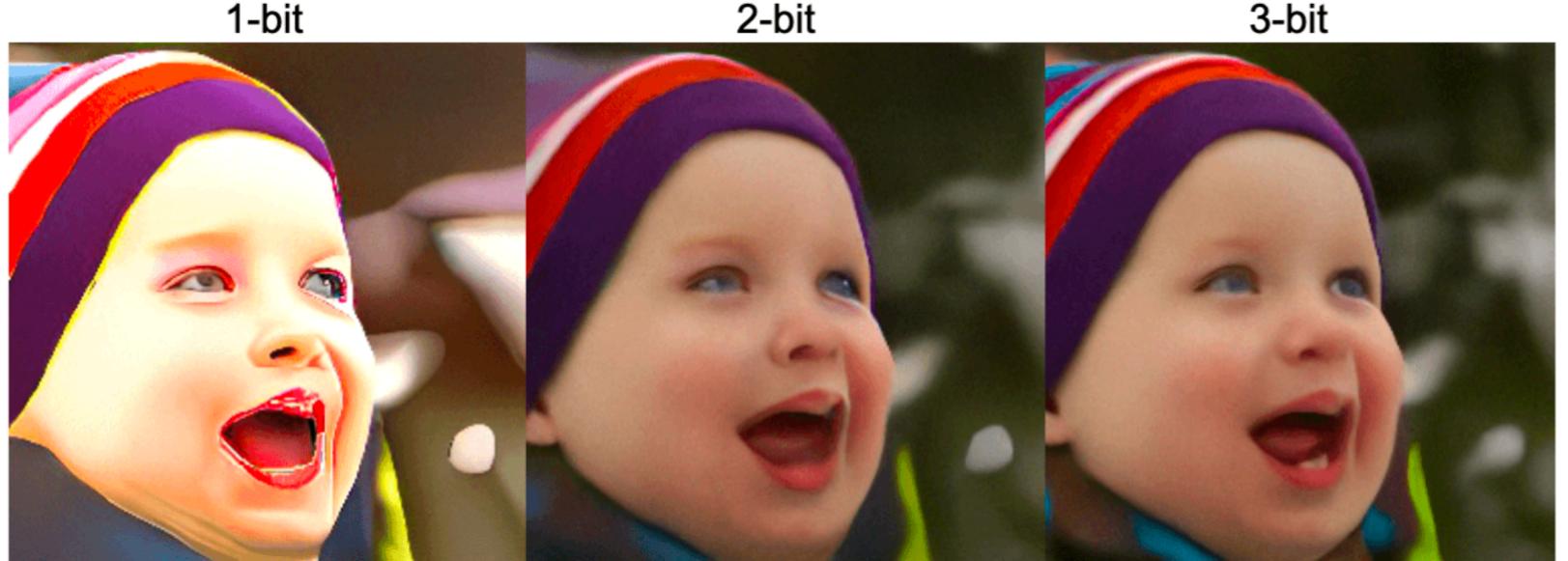
Results of QCS-SGM on CelebA in the fixed budget case $(Q \times M = 12288)$

(b) 1-bit, M = 12288

(d) 3-bit, M = 4096

QCS-SGM: Quantized CS with SGM Experimental Results FFHQ 256×256 high-resolution images

1-bit



 $M = \frac{1}{8}N$

PSNR: 11.64 dB, SSIM: 0.500 PSNR: 26.71 dB, SSIM: 0.753 PSNR: 24.18 dB, SSIM: 0.695

The proposed QCS-SGM can even accurately recover high-resolution image from only a few low-resolution (1,2,3-bit) quantized measurements

Compression Ratio $\frac{M}{N} = \frac{1}{8} \ll 1$

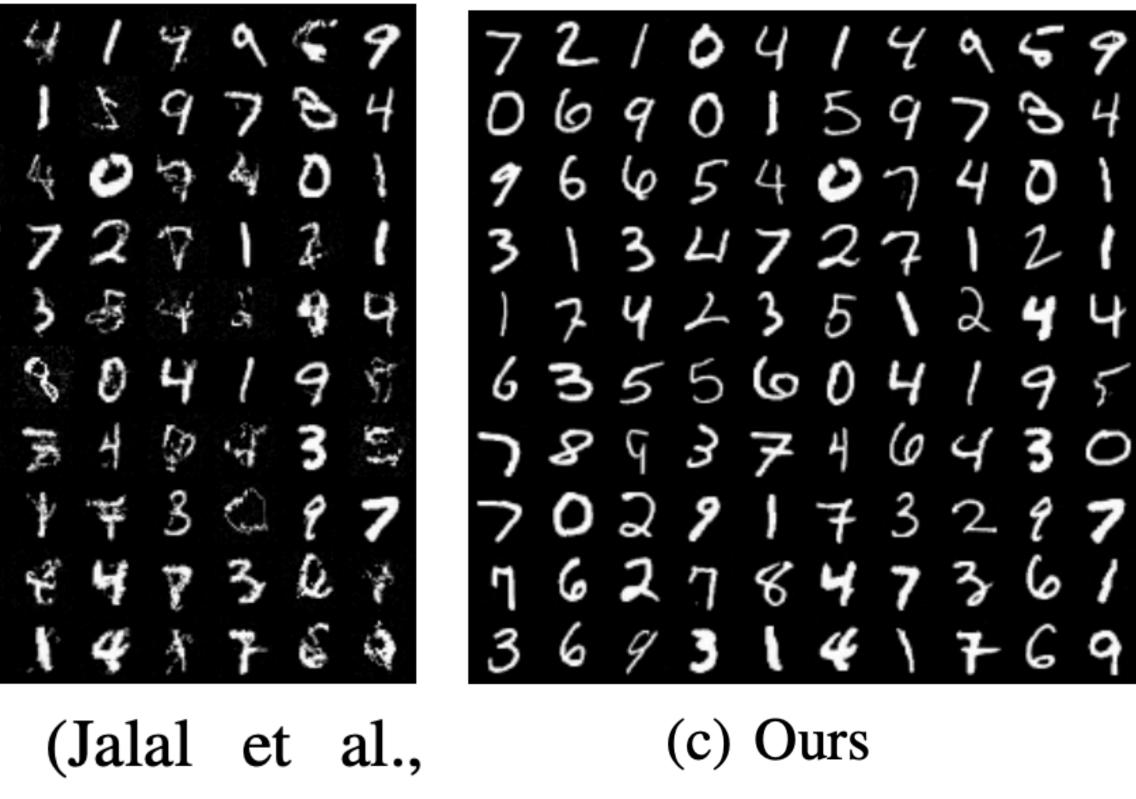
3-bit

Ground Truth

Experimental Results

The proposed QCS-SGM outperforms the Jalal et al for general matrices

Comparison with Jalal et in the special linear case on MNIST



M = 200, $\sigma = 0.05$ and the condition number of matrix A is cond(A) = 1000

Contents

- Background: Quantized Compressed Sensing
- Generative Models: Score-based Generative Models (SGM)
- QCS-SGM: Quantized Compressed Sensing with SGM
- QCS-SGM+: Improved QCS-SGM for general sensing matrices

Limitation of QCS-SGM

QCS-SGM is limited to (approximately) row-orthogonal matrices A

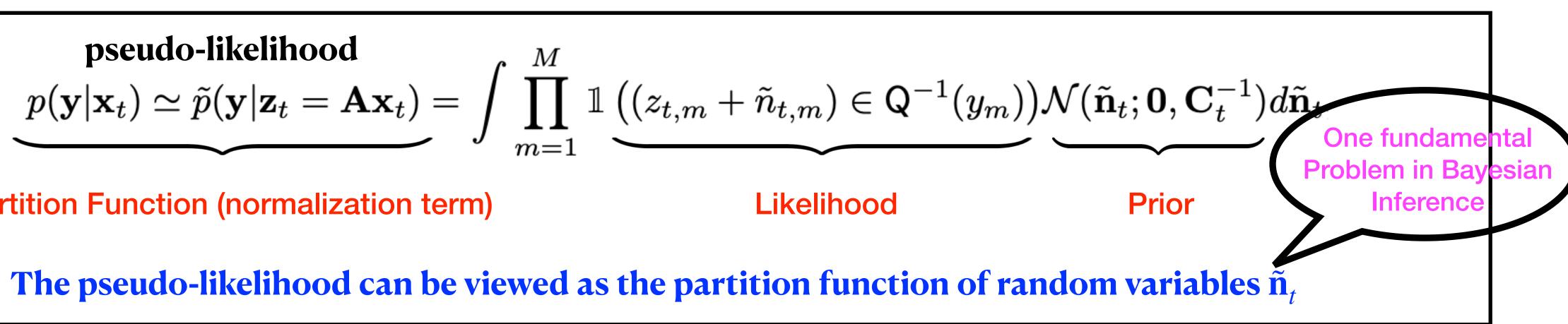
Why

? The pseudo-likelihood is otherwise intractable

$$p(\mathbf{y}|\mathbf{x}_t) \simeq \tilde{p}(\mathbf{y}|\mathbf{z}_t = \mathbf{A}\mathbf{x}_t) = \int \prod_{m=1}^M \mathbb{1} \left((z_{t,m} + \tilde{n}_{t,m}) \in \mathbf{Q}^{-1}(y_m) \right) \mathcal{N}(\tilde{\mathbf{n}}_t; \mathbf{0}, \mathbf{C}_t^{-1}) d\tilde{\mathbf{n}}_t$$

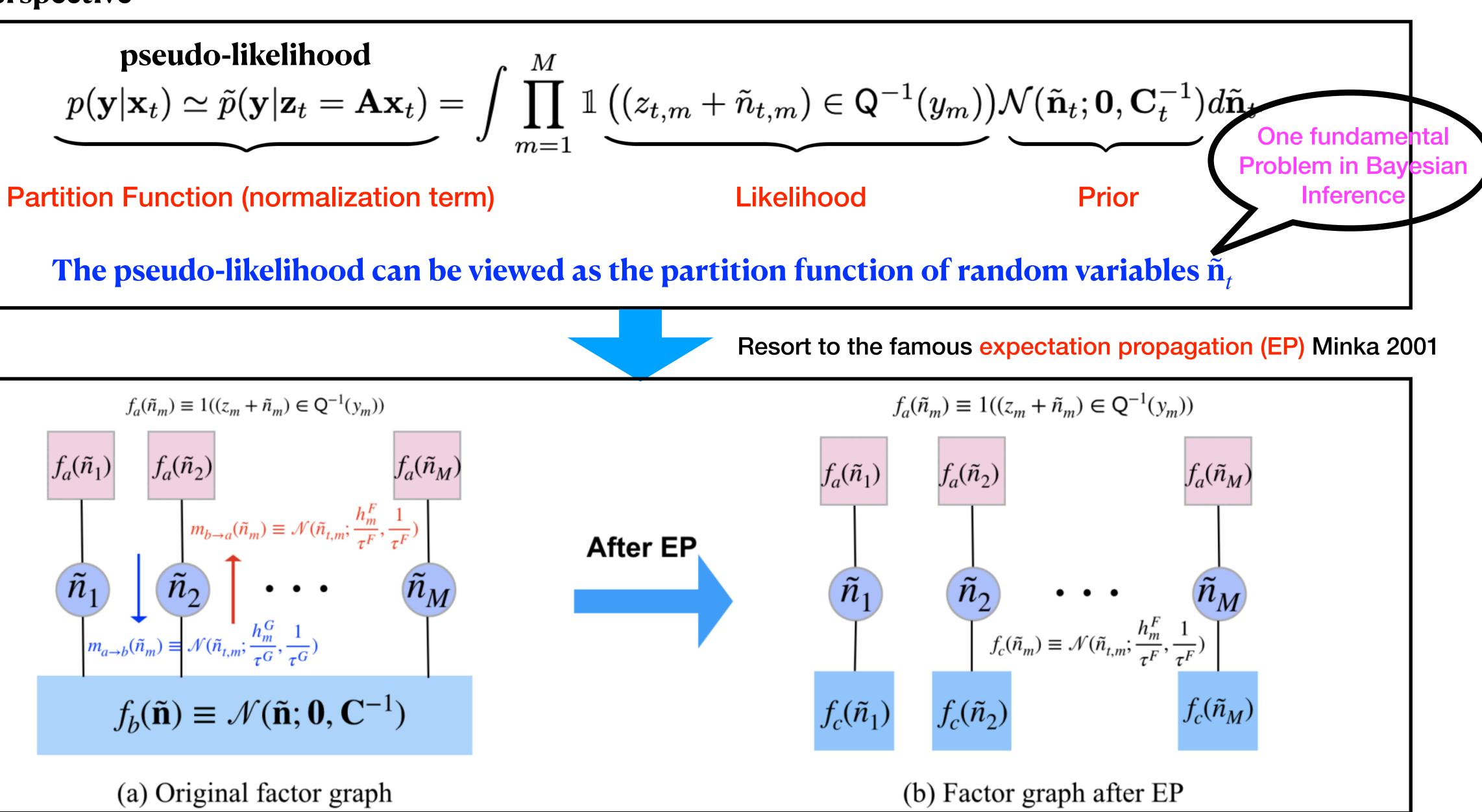
Intractable integration

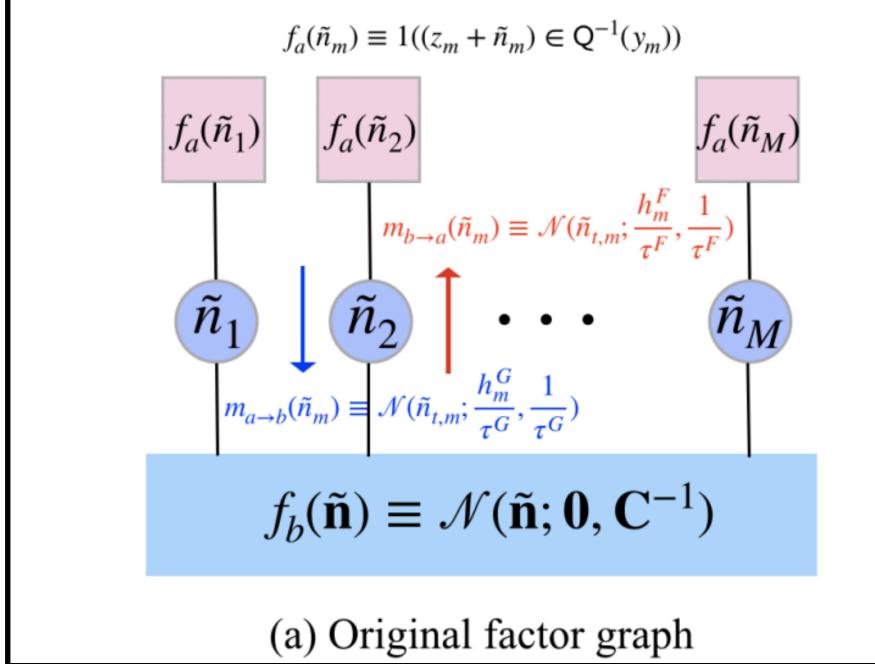
A New Perspective



Partition Function (normalization term)

A New Perspective

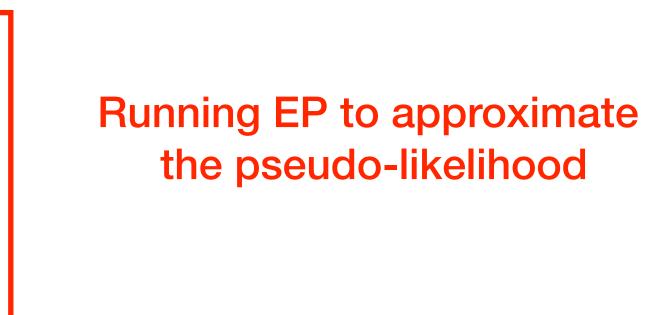




 \blacksquare QCS-SGM+

Algorithm 1: QCS-SGM+ Input: $\{\beta_t\}_{t=1}^T, \epsilon, \gamma, IterEP, K, \mathbf{y}, \mathbf{A}, \sigma^2$, quantization thresholds $\{[l_q, u_q) | q \in \mathcal{Q}\}$ Initialization: $\mathbf{x}_{1}^{0} \sim \mathcal{U}(0, 1)$ 1 for t = 1 to T do $\alpha_t \leftarrow \epsilon \beta_t^2 / \beta_T^2$ 2 for k = 1 to K do 3 Draw $\mathbf{z}_{t}^{k} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 4 Initialization: h^F, τ^F, h^G, τ^G for it = 1 to IterEP do 5 $egin{aligned} oldsymbol{h}^G &= rac{oldsymbol{m}^a}{\chi^a} - oldsymbol{h}^F \ au^G &= rac{1}{\chi^a} - au^F \end{aligned}$ 6 7 $egin{aligned} oldsymbol{h}^F &= rac{oldsymbol{m}^b}{\chi^b} - oldsymbol{h}^G \ au^F &= rac{1}{\chi^b} - au^G \end{aligned}$ 8 9 Compute $\nabla_{\mathbf{x}_t} \log p_{\beta_t}(\mathbf{y} \mid \mathbf{x}_t)$ as (11) 10 $\mathbf{x}_{t}^{k} = \mathbf{x}_{t}^{k-1} + \alpha_{t} \Big[\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}_{t}^{k-1}, \beta_{t}) + \gamma \nabla_{\mathbf{x}} \Big]$ 11 $\mathbf{x}_{t+1}^0 \leftarrow \mathbf{x}_t^K$ 12 **Output:** $\hat{\mathbf{x}} = \mathbf{x}_T^K$

Code: https://github.com/mengxiangming/QCS-SGM-plus



$$\left[\mathbf{x}_{t} \log p_{\beta_{t}}(\mathbf{y} \mid \mathbf{x}_{t})\right] + \sqrt{2\alpha_{t}} \mathbf{z}_{t}^{k}$$

General Matrices

(a) ill-conditioned matrices

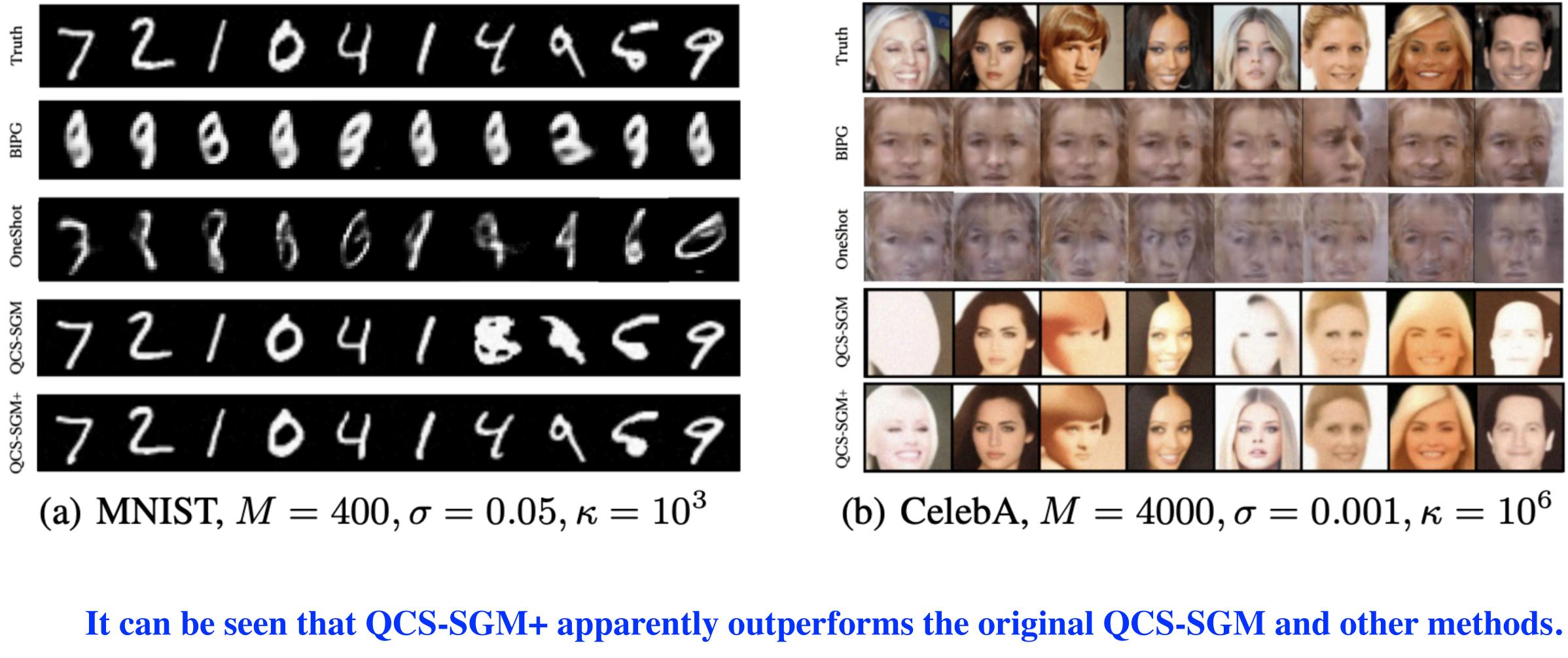
$\mathbf{A} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathrm{T}}$

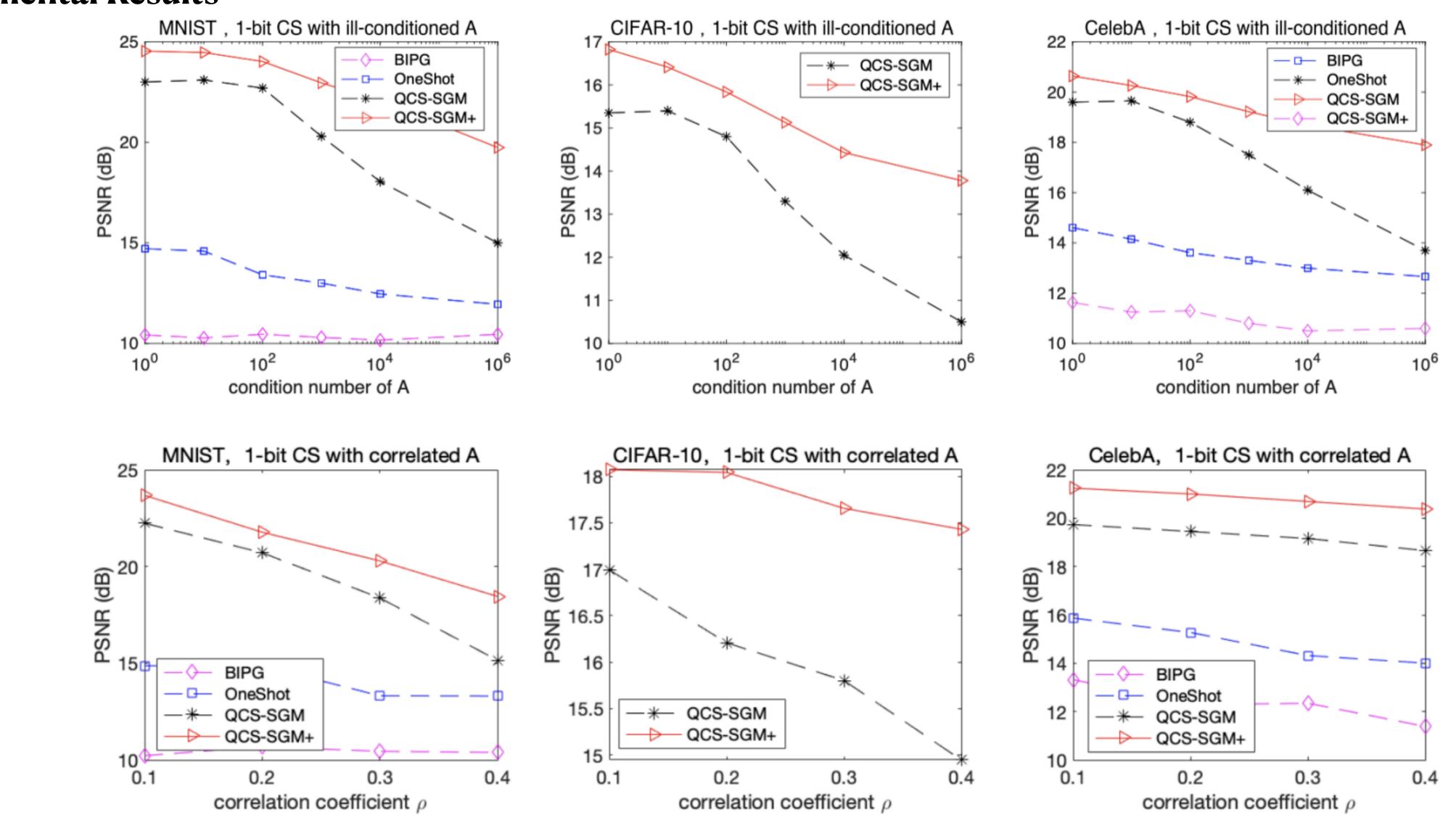
 ${\bf V}$ and ${\bf U}$ are independent Harr-distributed matrices nonzero singular values of A satisfy $\frac{\lambda_i}{\lambda_{i+1}} = \kappa^{1/M}$, where κ is the condition number.

(b) correlated matrices

 $\mathbf{A} = \mathbf{R}_L \mathbf{H} \mathbf{R}_R$ where $\mathbf{R}_L = \mathbf{R}_1^{\frac{1}{2}} \in \mathbb{R}^{M \times M}$ and $\mathbf{R}_R = \mathbf{R}_2^{\frac{1}{2}} \in \mathbb{R}^{N \times N}$, $\mathbf{H} \in \mathbb{R}^{M \times N}$ is a random matrix The (i, j) th element of both R1 and R2 is $\rho^{|i-j|}$ and ρ is termed the correlation coefficient

1-bit CS on MNIST and CelebA for ill-conditioned A ($\kappa = 10^3$ for MNIST and $\kappa = 10^6$ for CelebA)





It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods.

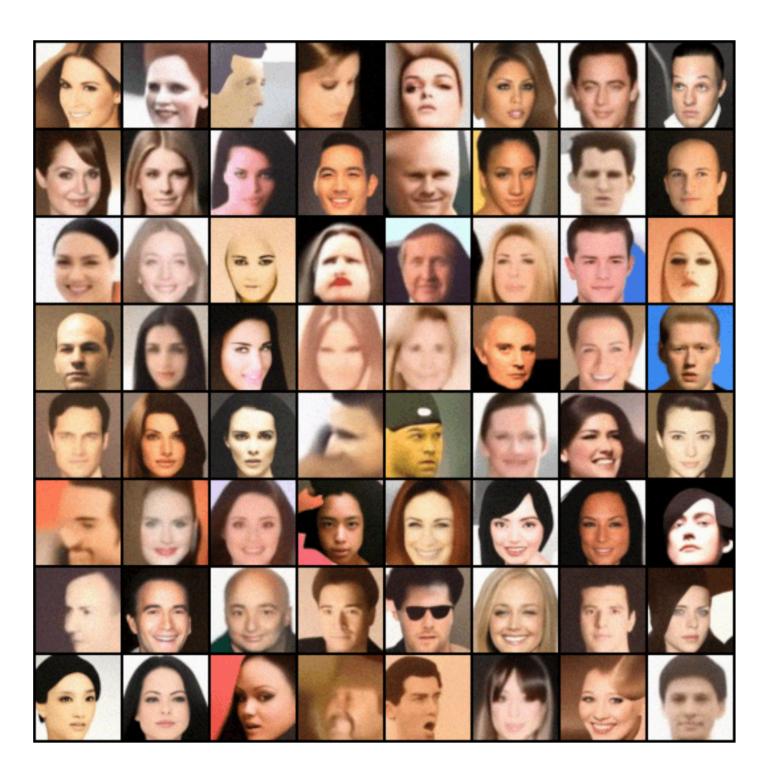
It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods.

(b) 1-bit CS with correlated $A, \rho = 0.4, M = 400, \sigma = 0.1$

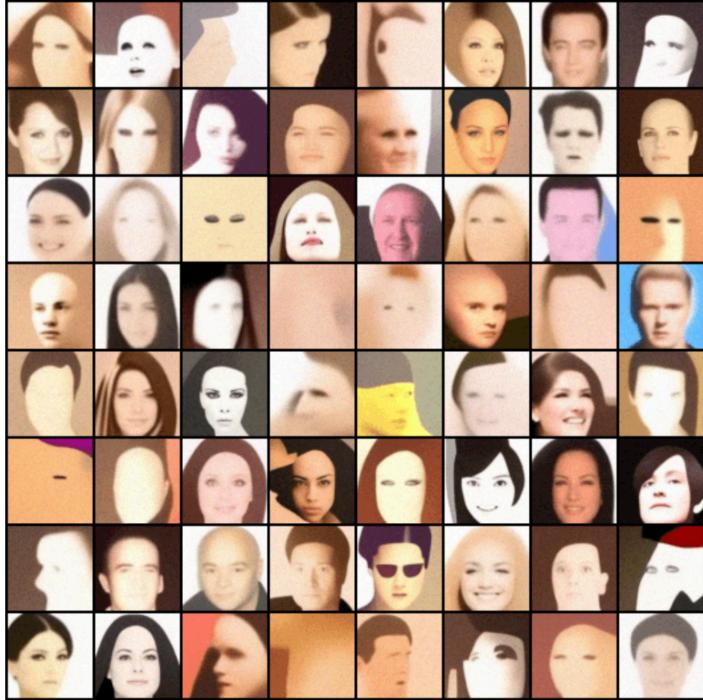
Truth

QCS-SGM+





QCS-SGM



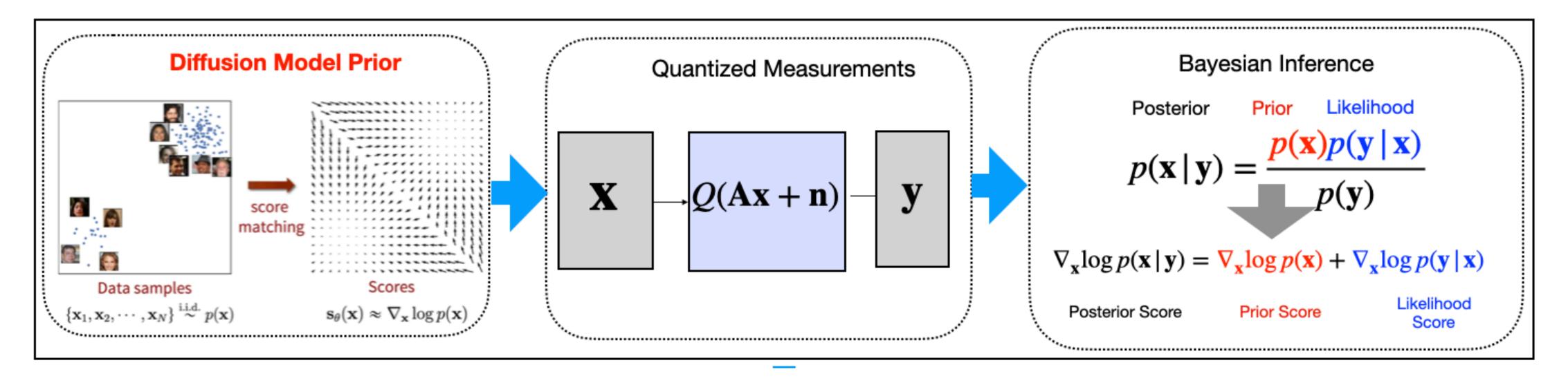
1-bit CS on CelebA for ill-conditioned A ($\kappa = 10^6$ for CelebA), $M = 4000 \ll N, \sigma = 0.1$

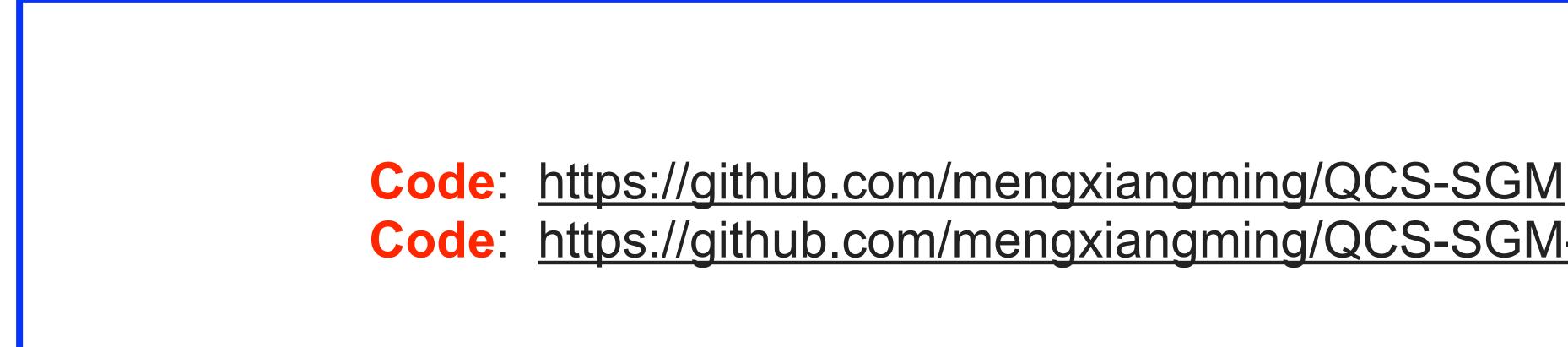
It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM.

Brief Summary

Summary

We proposed QCS-SGM, one quantized CS algorithm using score-based models (diffusion models), as well as an advanced variant QCS-SGM+ for general sensing matrices.



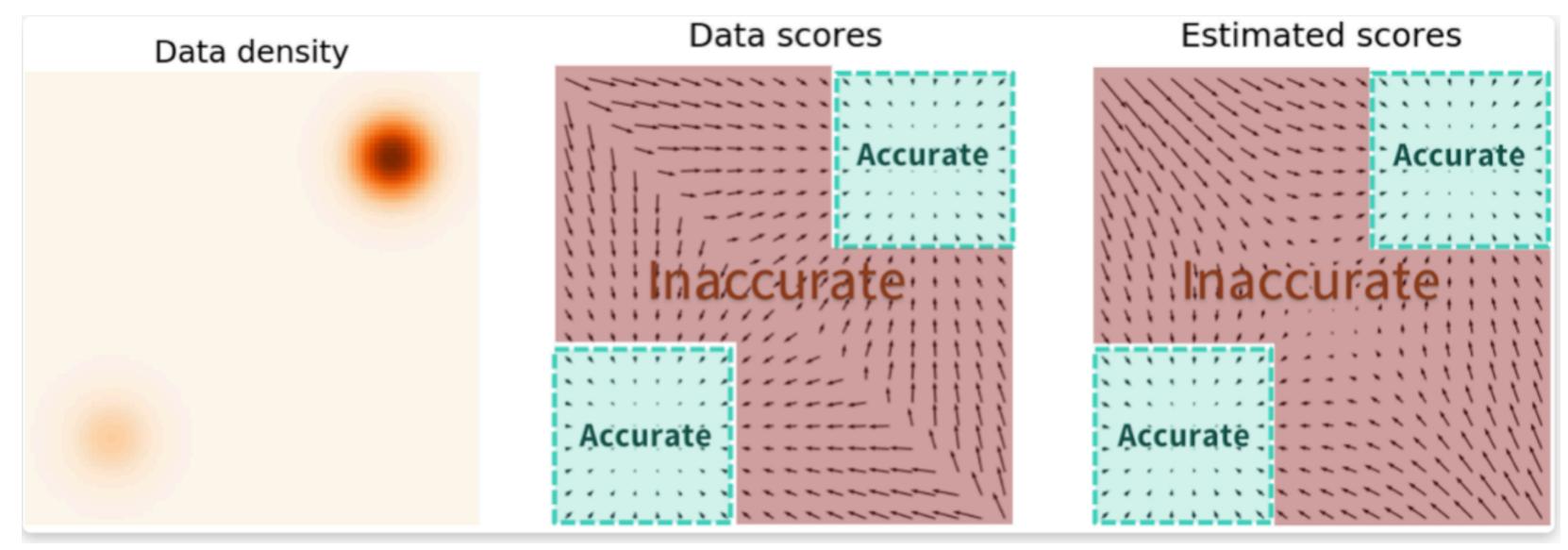


Code: https://github.com/mengxiangming/QCS-SGM-plus

Thank you! Q&A

Noise Perturbed Score-Matching

Estimated scores are only accurate in high density regions.



Original distribution $p(\mathbf{x})$

Noise Perturbed Score-Matching

Estimated scores are only accurate in high density regions.

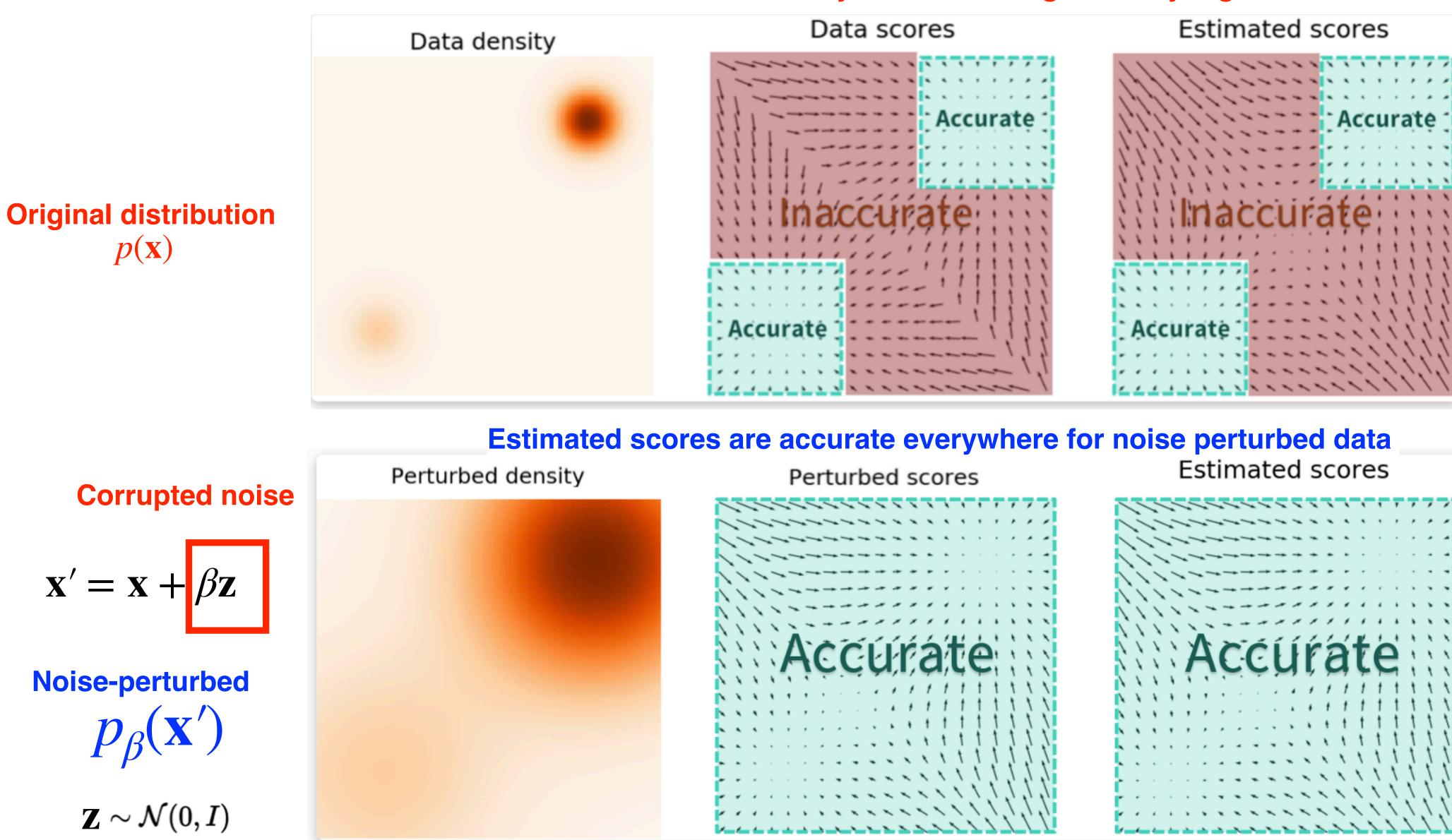
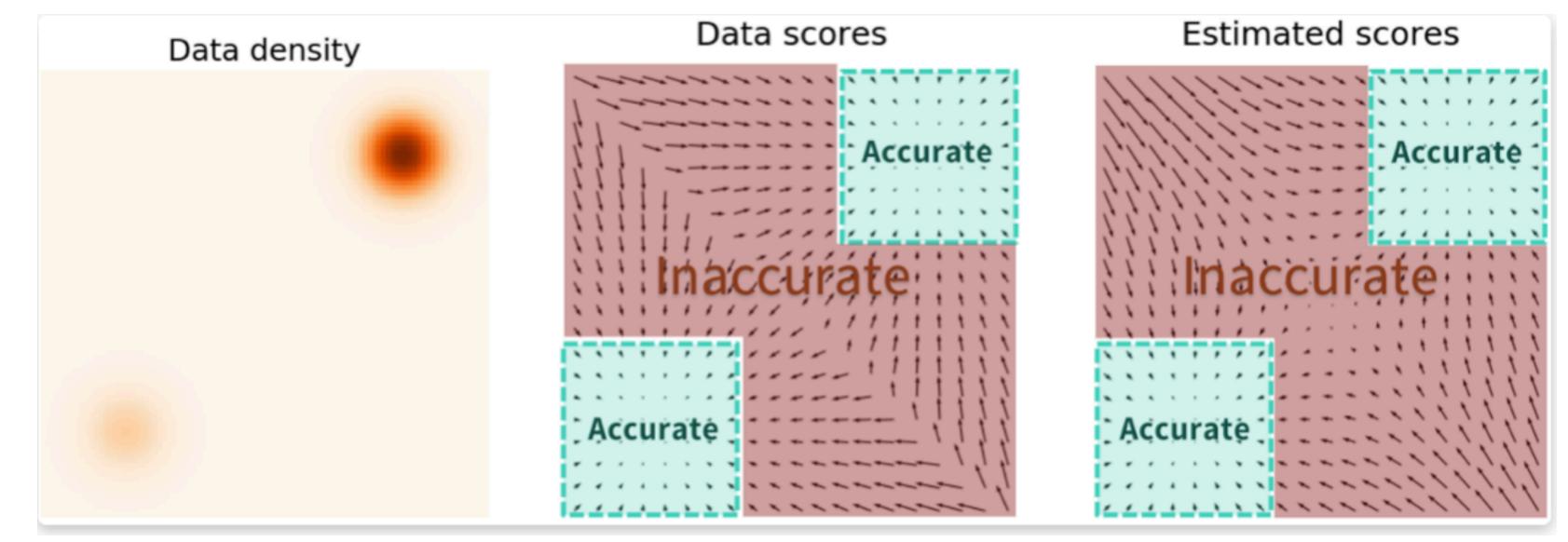


Figure credit to Yang Song)

Noise Perturbed Score-Matching

Estimated scores are only accurate in high density regions.



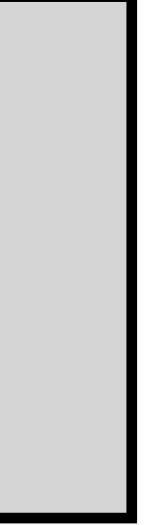
Original $p(\mathbf{x})$

Estimated scores are accurate everywhere for noise perturbed data

Q: how to choose an appropriate noise scale β for the perturbation?

Large noise: cover the low-density regions well, but different from the original distribution

Small noise: similar to the original distribution, but does not cover low-density regions well

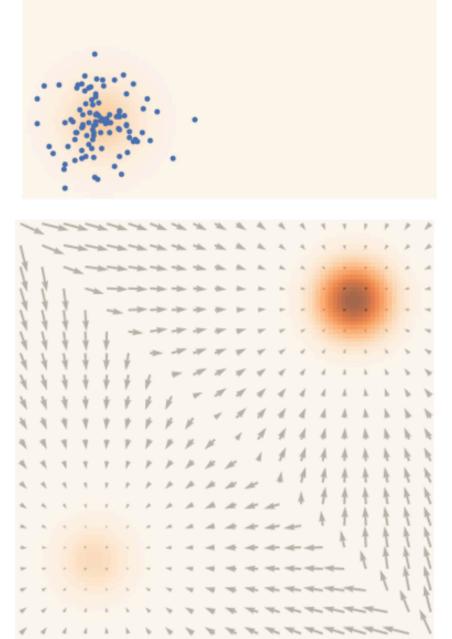


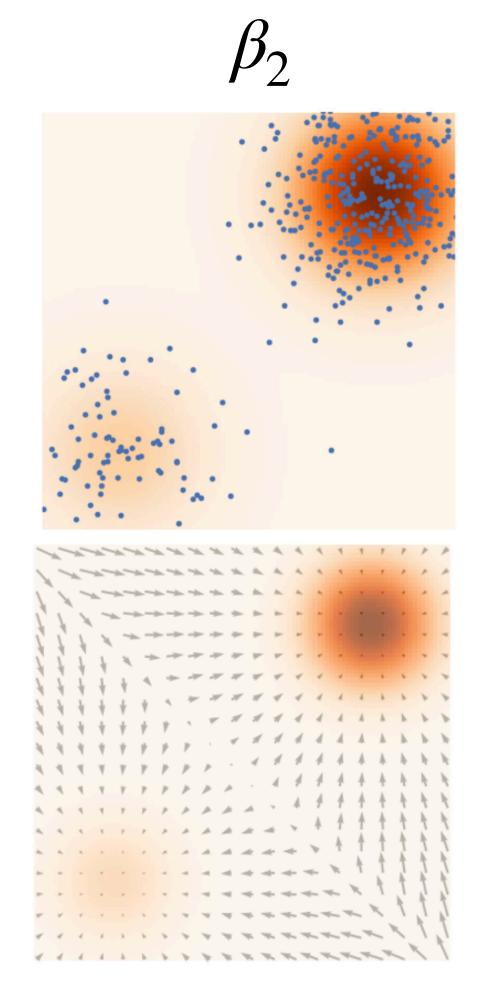
Noise Perturbed Score-Matching

samples of X_t

estimated scores

Figure credit to Yang Song





Annealing: using multiple noise scales $\{\beta_t\}_{t=1}^T$ for the perturbation! $\mathbf{X}_t = \mathbf{X} + \beta_t \mathbf{Z} \qquad 0 < \beta_1 < \beta_2 < \cdots < \beta_T$

