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Problem Statement
O Generalized Linear Models (GLM)

Signal of interest linear mixing probabilistic mapping observations

R" R" M
Cal) ——> AeR"™Y ———> p(y|z) —>Y<R

e Goal

To infer the input x (and/or z) given the output y and A, assuming the distributions of x and p(y|z)
are known
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Problem Statement
O Generalized Linear Models (GLM)

Signal of interest linear mixing probabilistic mapping observations

R" R" M
Cal) ——> AeR"™Y ———> p(y|z) —>Y<R

* Goal
To infer the input x (and/or z) given the output y and A, assuming the distributions of x and p(y|z)
are known

e Applications
v’ Compressed sensing (CS), quantized or 1-bit CS
v Wireless signal detection: code division multiple access (CDMA), multiple input multiple
output (MIMO) in 5G communications, channel estimation, etc.
v linear regression or classification and a variety of linear inverse problems

» Special case: standard linear models
In particular, if p(y|z) is Gaussian, GLM reduces to the common standard linear models (SLM)
neRY
Signal of interest linear mixing + observations

XeRY — > A c RMXN > >yeRM

X~ Py (X) Y=AX+N  n-A10,) 5



Problem Statement
O Generalized Linear Models (GLM)

Signal of interest linear mixing probabilistic mapping observations

R" R" M
Cal) ——> AeR"™Y ———> p(ylz) —>Y<R

e Optimal Bayesian estimation

According to the Bayes’ rule, the posterior distribution can be computed as

po(x;(p))f;/|x) marginalize o(x |y) = J:Xi p(x|y)dx,

p(x|y) =

Posterior mean X - :J. X P(X | y)dx MMSE

Posterior variance ViMMSE _ I Xi2 p(xi | Y)dXi _ ()'ziMMSE )2 estimates



Problem Statement
O Generalized Linear Models (GLM)

Signal of interest linear mixing probabilistic mapping observations

R" R" M
Cal) ——> AeR"™Y ———> p(ylz) —>Y<R

e Optimal Bayesian estimation

According to the Bayes’ rule, the posterior distribution can be computed as

po(xz)gf;dx) marginalize o(x |y) = in p(x|y)dx,

p(x|y) =

Posterior mean X - :j X P(X | y)dx MMSE

Posterior variance ViMMSE _ I Xi2 p(xi | Y)dXi _ ()'ziMMSE )2 estimates

Curse of Dimensionality: The optimal Bayesian inference becomes intractable in high
dimensional case due to integration (or summation) operation

We have to resort to approximate inference methods



AMP: review and EP perspective
O Approximate message passing (AMP)

AMP iteratively decouples the original vector inference problem to scalar inference problems
Initialization AMP Algorithm

Ij?l =2 +tm Fort=1..,T
y=Ax+n—4: V;:ZAZZf
. Ry = zy +1ny _ e
* Evolution of AMP = 2 A % ;

v Proposed in the field compressed sensing (CS) [DMMO09]
v Early work in communications [Kabashima 03] [Tanaka 02] =1/ Z Onsager term
v’ Deeply related to TAP equations and replica methods in statistical A “(y 3 Zt)

physics [KMssz12] R =& + EEZ%

. . a (o
Extended with EM learning [KMSSz12][VS11] S ( |Rt,2t) Sl _ Var(xi |R§,2§)

Extended to Generalized AMP (GAMP) [Rangan12] for GLM models eidl
Extended to vector AMP (VAMP) [RsF16] orthogonal AMP (OAMP) [ML17]
Many other extensions....

AN NANIN



AMP: review and EP perspective
O Approximate message passing (AMP)

AMP iteratively decouples the original vector inference problem to scalar inference problems
Initialization AMP Algorithm

‘Tj{l =2 +tm Fort=1..,T
y=Ax+n—4: W:ZA;;
. Ry = zy +1ny _ e
* Evolution of AMP = 2 A % ;

v Proposed in the field compressed sensing (CS) [DMMO09]
v Early work in communications [Kabashima 03] [Tanaka 02] =1/ Z Onsager term
v’ Deeply related to TAP equations and replica methods in statistical A “(y 3 Zt)

physics [KMssz12] R =& + EEZ%

. . a (o
Extended with EM learning [KMSSz12][VS11] S ( |Rt,2t) Sl _ Var(xi |R§,2§)

Extended to Generalized AMP (GAMP) [Rangan12] for GLM models eidl
Extended to vector AMP (VAMP) [RsF16] orthogonal AMP (OAMP) [ML17]
Many other extensions....

AN NANIN

* Properties of AMP

v’ For i.i.d. Gaussian matrix A, asymptotically optimal and rigorously analyzed via state evolution (SE)
[BM11]

v’ For general matrices A, AMP may diverge [Bm11]
v VAMP converges for right-rotationally invariant matrices [RsF16]
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* Properties of AMP

v’ For i.i.d. Gaussian matrix A, asymptotically optimal and rigorously analyzed via state evolution (SE)
[BM11]

v’ For general matrices A, AMP may diverge [Bm11]
v VAMP converges for right-rotationally invariant matrices [RsF16]

e Derivation of AMP

v’ Originally derived from belief propagation (BP) via central limit theorem and Taylor series expansion
[DMMO09] [DMM10]

v’ Alternatively derived from expectation propagation (EP) via neglecting high order terms [MwkL15a] 10



AMP: review and EP perspective
O An EP Perspective on AMP

* Expectation Propagation (EP) [Minka01] [MOO5]

p(X) _ Hfa (X) approximated»as q(x) _ H]T;L(X)

a

Optimization objective: min KL( p(X) H q(X)) q(x) = h(x) exp{HTgb(a:) + g(@)}

11
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AMP: review and EP perspective
O An EP Perspective on AMP

* Expectation Propagation (EP) [Minka01] [MOO5]

p(X) _ Hfa (X) approximated}as q(x) _ H]T;L(X)

Iteratively Refine each factor

£ =argmin KL(f, (0[] () 1 1] ] ()

t(x)ed

Properties of EP:

|

|

v Applicable to both discrete and continuous distributions p( |

v Equivalent to moment matching : min KL(p||q)
I

v’ Deeply related to the adaptive Cavity Method in
statistical physics

> O
a(x) = Proj, (a(x))

13




AMP: review and EP perspective

O An EP Perspective on AMP y
Target distribution  p(x|y) o« [ [ py(z,)] | /V(ya;(AX)a ,0°)
1=1 a=1

N M
Approximate distribution ¢(x) o [] q,(z,)]]
1=1 =

a=11

N
H q,;(z,) fully factorized form

1
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AMP: review and EP perspective

O An EP Perspective on AMP y
Target distribution  p(x|y) o H po(z)] | /V(ya;(AX)a ,0°)

a=1
M N
Approximate distribution ¢(x) H ¢o(z)[] I ¢,:(z,;) fully factorized form
i=1 =1i=1
* Then, we can iteratively refine all the approximating factors using EP principle
* Intuitively, this optimization process can be realized in an message passing manner as BP
Expectation Propagation (EP)

PrOJCD z—>a fH j—>a ya’X)]

mt A\, ) X J=i
(l—>'l( Z) mzt_}(l(xz)
Projy, [po (% )H mg_w (xz )]
mfit(rz:z) X -

* Choosing the projection set as Gaussian and neglecting high-order terms results in the AMP [MwKL15a]

15



AMP: review and EP perspective

O An EP Perspective on AMP y
Target distribution  p(x|y) o H po(z)] | /V(ya;(AX)a ,0°)

a=1
M N
Approximate distribution ¢(x) H 0 (z)]1 H (z.) fully factorized form
1=1 a=11=

* Then, we can iteratively refine all the approximating factors using EP principle
* Intuitively, this optimization process can be realized in an message passing manner as BP

Expectation Propagation (EP)

PrOJCD z—>a fH ]—>a ya’X)]

J=i

m, _.(z;)
mf—m (xz)

Projy, [po (z, )1__[ mz’;Z (z; >]
b

m! (z;)

a—1

e The EP perspective of AMP: m
v Explicitly establishes the relationship between AMP and EP[MWAKL15a,
MWKL15b, WKNLHDQ14]
v’ Facilitates the extension of AMP to the complex-valued AMP
(simply using circularly-symmetric Gaussian) [MWKL15b]
v Provides a unified view of AMP (derived from scalar EP [MWKL15a] )
and VAM P(derived from vector EP [RSF16] ) Circularly-symmetric Gaussia

16
Complex-valued-version

[MWKL15a] X. Meng, S. Wu, L. Kuang, and J. Lu, “An expectation propagation perspective on
approximate message passing,” |IEEE Signal Process. Lett., vol. 22, no. 8, pp. 1194-1197, Aug. 2015.




A Unified Inference Framework for GLM

O Motivations

* GLM is more general: the measurements are often obtained in a nonlinear way
v’ quantized measurements, e.g., 1-bit CS, low resolution ADC in wireless communication
v’ incomplete measurements
v' non-Gaussian and/or non-additive noise
v’ discrete measurements, and so on....
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* SLM has already been extensively studied
v’ simple to design and analyze
v’ a variety of Bayesian methods, e.g., AMP and sparse Bayesian learning (SBL) have been proposed
v’ extension of one existing SLM method to GLM needs careful design, which is often difficult to
follow and task-specific, such as the conventional extensions from AMP to GAMP, VAMP to GVAMP
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A Unified Inference Framework for GLM
O Two Equivalent Factor Graphs for GLM

Py (X) X p(y|x) P (X) X 5(z-Ax) z p(ylz)
-

(a) Factor graph v1 (vector form) (b) Factor graph v2 (vector form)

20



A Unified Inference Framework for GLM
O Two Equivalent Factor Graphs for GLM

Py (X) X p(y|x) P (X) X 5(z-Ax) z p(ylz)

“ B

(b) Factor graph v2 (vector form)

(a) Factor graph v1 (vector form)

O Decoupling GLM into SLM via EP

Po (X) X 5(z—-Ax) z m_,(z) p(ylz)

—
b

M. (2)
t-1

. oextry ext rx EP message passing
me (Z) x /l/(Z, Zn (t 1)’VA (t 1)| ) (-th iteration)

Proj,, ( p(ylz)m'™ (z)

Z—>p

(@) oc N (Z3 254 (1), v (D)1)

th (Z)oc
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A Unified Inference Framework for GLM
O Two Equivalent Factor Graphs for GLM

Py (X) X p(y|x) P (X) X 5(z-Ax) z p(ylz)
-

(a) Factor graph v1 (vector form) (b) Factor graph v2 (vector form)

O Decoupling GLM into SLM via EP

Po (X) X 5(z—-Ax) : z m_,(z) p(ylz)
| —_—
. —
: m, .. (2)

m™ (z)« /l/(z; 28 (t—1), v (t —1)I) 3P MICSIEE [PEEEIG

25p (t-th iteration)

Proj, (P(YIZ)M (2)) e
(@) oc N (Z3 254 (1), v (D)1)

th (Z)oc
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A Unified Inference Framework for GLM
O Decoupling GLM into SLM via EP

Po (X) X 5(Z—AX) Z mpﬁZ(Z) mZAp(Z) p(ylz)

1= T
L1 .,
Pseudo SLM MMSE module B

23



A Unified Inference Framework for GLM
O Decoupling GLM into SLM via EP

P, (X) X S(z-Ax) Z M. (2) M., (2) p(ylz)
L. I

Pseudo SLM MMSE module B

 The original GLM is iteratively decoupled into a sequence of SLM problems

_ _ 2% (t-1),v (t-1) Component-wise Unified Inference Framework for GLM
y — A)(_l_n MMSE « Initialization z3'(0),vy'(0)
e Fort=1:T, Do
zgf’“ = E[Z | Z;“,VZ“] 1. Perform component-wise MMSE
ﬁ~M0’52|) 2. Update z§"(t),ve'(t)
25 (1), Ve (t) Vi :Var[z | z‘jft,vix‘] 3. Perform SLM inference one or more
~ oxt ~2 ext B VM TB iterations
y=24g (t).o =Vg (t) h 4. Compute z3™ (1), vy (t) and then
u date Zext t ,Vext t
Module A Module B P ~ VO
1 1 1 1 1 1
ext |, post T ext o =— ——
Vo () v () ver () va () vgTi(t) vii(t-D) Note: The computation of posterior mean
22 z™'()  z¥'(t x X and variance of z in module A may differ
fxt( ) = ﬁost( ) - eth( ) ZeBt(t) = ZEOSt (t) — Z;t(t -1) for different SLM inference methodZ.
Vi, (t) Vi (t) Vg (t) V;Xt (t) Vgost (t) Vixt (t _1)

[MWZ18] X. Meng, S. Wu and J. Zhu, “A unified Bayesian inference framework for generalized linear model,”

IEEE Signal Process. Lett., vol. 25, no. 3, Mar. 2018. 24



A Unified Inference Framework for GLM
O From AMP to Gr-AMP [MWZ18]

The Gr-AMP Algorithm

Zext t_l ’Vext t_l . I t I t ZeXI(O),VeXt(O)
AMP A ; Component-wise - Fort in:'%nDoA ’
(TO iterations) ext ext MMSE 1. Perform component-wise MMSE
Z (t),V (t) ext ext
B B 2. Update z&(t), v (t)
* p B ''B
Module A <€ Module B 3. Perform AMP for T0 iterations

4. Compute 2> (t),vi*' (t) and then
update 23" (t), V3" (t)

* Gr-AMP is a double-loop iterative algorithm
v In the outer-loop, module A and B exchanges extrinsic messages
v Itis proved for AMP, the output message of module A has already computed within AMP, i.e., Zy ©)=Z,0).\2 ©)=V.()
v In each inner-loop, module A performs AMP for TO iterations, rather than being fixed to 1 as GAMP.

25



A Unified Inference Framework for GLM

O From AMP to Gr-AMP [MWZ18]

25 -2 ¢

AMP 5 Component-wise . Fort=1:T Do
(TO iterations) 25 ()P (1) MMSE 1. Perform component-wise MMSE
B \"/» VB 2. Update zy(t),ve'(t)
Module A <€ Module B 3. Perform AMP for T0 iterations

The Gr-tAMP ?Algorithm

« Initialization z%'(0),v3"(0)

4. Compute 2> (t),vi*' (t) and then
update 23" (t), V3" (t)

* Gr-AMP is a double-loop iterative algorithm
v In the outer-loop, module A and B exchange extrinsic messages
v Itis proved for AMP, the output message of module A has already computed within AMP, i.e., Zy ©)=Z,0).\2 ©)=V.()
v In each inner-loop, module A performs AMP for TO iterations, rather than being fixed to 1 as GAMP.

« Relation of Gr-AMP to GAMP

v Gr-AMP is precisely equivalent to GAMP when TO = 1 and thus provides an insightful perspective
on GAMP: In effect, GAMP performs one iteration of AMP each time after transforming the GLM

but in a different way.

1

—&—=GAMP
=e—Gr-AMP,T0=4

MSE (dB)

v A more flexible message passing schedule: double-loop implementation

 Quantized CS for 1,2,3-bit cases: N =1024,M=512,SNR=50dB

« Gr-AMP and GAMP converge to the same performance
for i.i.d. Gaussian A

« Total number iterations of AMP are about the same while the
number of MMSE operations is reduced for Gr-AMP.
Still needs further study. 26



A Unified Inference Framework for GLM
O From VAMP/SBL to Gr-AMP/Gr-SBL [MWZ18]

The Gr-VAMP/Gr-SBL Algorithm

Z3 (=D, (-1 « Initialization z3'(0),v3"(0)
VAMP/SBL A ; Component-wise - Fort in:I%nDOA ’
(TO iterations) oxt ext MMSE 1. Perform component-wise MMSE
Z (t),V (t) ext ext
B B 2. Update z§"(t),ve'(t)
Module A <€ Module B 3. Perform VAMP/SBL for TO iterations

4. Compute 2> (t),vi*' (t) and then
update 23" (t), V3" (t)

* Gr-VAMP/Gr-SBL
v In the outer-loop, module A and B exchanges extrinsic messages
v The posterior mean and covariance of z in module A can be computed as:

zKOSt = A)A(A,VAIDOSt = WTra(:e(AZAAT) f(A ZA are the posterior mean and covariance of x computed in VAMP/SBL

v In each inner-loop, module A performs VAMP/SBL for TO iterations

27



A Unified Inference Framework for GLM

O From VAMP/SBL to Gr-AMP/Gr-SBL [MWZ18]

25 -2 ¢

VAMP/SBL 5 Component-wise . Fort=1:T Do
(TO iterations) MMSE

zg' (1),vg' (1)

Module A <€ Module B 3. Perform VAMP/SBL for TO iterations

» Gr-VAMP/Gr-SBL

The Gr-VAMP/Gr-SBL Algorithm
« Initialization Zz3'(0),v3"(0)

1. Perform component-wise MMSE
2. Update zy(t),ve'(t)

4. Compute 2> (t),vi*' (t) and then
update 23" (t), V3" (t)

v In the outer-loop, module A and B exchange extrinsic messages
v The posterior mean and covariance of z in module A can be computed as:

zKOSt = A)A(A,VAIDOSt = WTra(:e(AZAAT) f(A ZA are the posterior mean and covariance of x computed in VAMP/SBL

v In each inner-loop, module A performs VAMP/SBL for TO iterations

8 0 T . M
S olk Gr-AMP Performance of de-biased NMSE for 1-bit CS
I(JI)J GAMP
-20 Gr-VAMP — — — H
= 2] i - v'N =512,M=2048,SNR=50dB, sparse ratio 0.1
o 5 10 15 20 25 30 35 |E-GrsBL |50 S T T, C o e
(a) Number of Iterations (x (A) = 1) v 10 = 1 1T0or both Gr-VAIVIF and Gr->bL
g o v When conditional number is 1, all kinds of
-10 .
3 0 T ] algorithms performs nearly the same.
Z [Ty v As the condition number increases, the
°° 1°(b) mebefgﬂteriionsfz (A)3:5100)4O o recovery performances degrade smoothly for
= o N 5 Gr-VAMP/GVAMP/Gr-SBL while both Gr-AMP
= 10 and GAMP diverge for even mild condition
n .
= 0 number, which show the robustness of Gr-
° 00 ot 0 108 108 5 15 VAMP/Gr-SBL/GVAMP for general matrices.
(c) Condition Number « (A)
[MWZ18]X. Meng, S. Wu and J. Zhu, “A unified Bayesian inference framework for generalized linear model,” IEEE Signal Process. 28

Lett., vol. 25, no. 3, Mar. 2018.



A Unified Inference Framework for GLM

O Bilinear GLM Problems
Component-wise

Signal Affine Mapping probabilistic mapping observations

RNXL Z M xL o
X-p(X0) —>  A() ——— p(Y|Z:8) —>Y eR"

Q
A(-) is a known affine linear function of unknown vector b, i.e., A(b) = A, + quAq
and known Ay, A, q=1

e Goal
To jointly infer X and b, given Y with unknown parameters 6, ,6,

29



A Unified Inference Framework for GLM

O Bilinear GLM Problems
Component-wise

Signal Affine Mapping probabilistic mapping observations
NxL Z M xL

X-p(X0) 2=  A() ——— p(Y|Z:6) —>Y cR™"

Q
A(-) is a known affine linear function of unknown vector b, i.e., A(b) = A, + quAq
and known Ay, A, q=1

e Goal
To jointly infer X and b, given Y with unknown parameters 6, ,6,

e Applications
v" Quantized Compressed sensing (CS) under matrix uncertainty
v’ Self-calibration, dictionary learning, matrix completion from nonlinear measurements
v’ Joint signal detection and channel estimation in wireless communications
v’ Many others...

e Special case: standard bilinear models

In particular, if Y =Z + N, where N is i.i.d Gaussian noise, BGLM reduces to the standard bilinear
models

30



A Unified Inference Framework for GLM
O Bilinear GLM Problems

X ~p(X;0x) HIJ(Ja; Ox) HP(XE;QX)-
Z — A(64)X,

L
Y ~ p(Y|Z:0y) = [ [ p(Vis|Zis: 0v) = [ | p(yilzi: 6v)
ij =
e The optimal estimate is the Maximum likelihood (ML) and MMSE estimate as

On = argmax py (Y; ©). O {0x.0,4,0y}
C)]

Xamse = E[X|Y; Oyl

py(Y:;0) = [p(X;0)p(Y|X;®)dX Evidence(partition function)

A n(X.Y: Oy
P(X|Y'~. @ML) = I( — ML) Posterior distribution
p(Y:Oyg,) .




A Unified Inference Framework for GLM

O Bilinear Adaptive VAMP (BAd-VAMP)

Algorithm 3 Bilinear Adaptive VAMP [SERS18]

« Bad-VAMP is proposed by Sarkar, Flecher, Rangan, Schniter " i“iti;“_zf_:o 0 60 g0 0
[SFRS18] very recently to address the bilinear recovery . for { — [}“hfn NP

. . . 2

from linear measurements using the adaptive VAMP and 5. for 7 =0..... 7 ,.0x do
4
5

EM learning framework. Vi:al, « gi(rt .yt 0)

Vi : 1/??1,5 — (Qi(“"f,z-"f'i._s?gtznf”f’i,z

oy 1 )
« Early work on bilinear recovery based on AMP methods, ¢ VU1 yllen, = rill® +1/m,
. L - T -7 2
e.g., BIGAMPIpsc14a] [psc14b], PBGAMP [psi6] and related 7 ¢} (X) o 112y pel@is 6 )=l =riel
works by Kabashima, Krzakala and Mézard [KKMSz16] [KMZ13] 8: 6, « argmaxg_E[ln px(X;0,)|q{]
9: end for
. 10: @il =9
» Compared with AMP based methods, Bad-VAMP shows | = /... = _
. . : - o = Thy 1,1
improved convergence over general matrices. 2 Virh, = (@t =t )/,
2 - - 10 T T 13: for 7 =0,.... 7 max do
PBIGAMP ]
o] | e I 14 Vil 4 gaa(rh vh 0. 70)
Toome N I5: VI 1/my, < (?E,e(r5,1=”!";tz,:?g.t:h’?’fu)}/”fé,:
s L T 16: VI:1/v5, < wllah, —roll° + 1/3’!%: L
3 17: 05(X) o TT, pye(wilr: 04y, 7y, e~ 3720l
{':3 ’ 18: 9f1 ¢ argmaxg , E[]Ilpy|x(Y|X; 04.7)Y, ¢
a 19: Ve — argmax,  E[lnpyx(Y|X;0%,v,)|Y, 5]
2 20: end for
1
2 ytt=a,
=0 . . 50 . . 24: vi: 7'1?5 = (T»’E,cmé,i - ”ff‘:_.i"';fz,zjf”flﬁ
0 5 10 15 1] L] 10 15 25: end for
mean p of A; mean u of A;

Fig. 2. CS with matrix uncertainty: Median NMSE (over 50 trials) on signal
c and uncertainty parameters b versus mean of matrices A; at M/N = 0.6.

Figure 2 copied from [SFRS18] 32



A Unified Inference Framework for GLM
O Bilinear Adaptive VAMP (BAd-VAMP)

Algorithm 3 Bilinear Adaptive VAMP [SERS18]

- Bad-VAMP is proposed by Sarkar, Flecher, Rangan, Schniter ! Initialize: .
vl - Tl! F} 9 911 J(.'u

[SFRS18] very recently to address the bilinear recovery o fort— 00 e
from linear measurements using the adaptive VAMP and 5. for =0, 7 .00 do
EM learning framework. 4 Vial, < gi(rl,, v ef)
3 W tL/ni (91(7'1.! V1, 02)) /.

« Early work on bilinear recovery based on AMP methods, ¢ /710 il - ‘mll +1/m,;
e.g., BIGAMP(psc14a] [Psc14b], PBGAMP [psi6] and related 7 "hf( ) o TTizy pa(@i; 0 )e =3 rnallzi=ril
works by Kabashima, Krzakala and Mézard [KKMSz16] [KMZ13] 8: 0  argmaxy E[ln px (X 6., g!]
9: end for
. 10: @il =9
» Compared with AMP based methods, Bad-VAMP shows | = /... = _
. . : Yo = T 1.1
improved convergence over general matrices. B Wlirh, = (@t =t et ),
2 ' T 10 T T 13: for’r,—(),...;’rg,;,m o '
—— PBRIGAMP :
o] | e I 14 imy < gl nifan)
“amewe |\ 15: W : 1/?}?5 (92 (154, '%,z?g.:h’f"aﬁ)}t/”fz,:
! B0 16: : 1/'}21 i ||1’2: ""z;” 1/;‘7231 L
g 17: ¢5(X) o< TT, pyx(wilzi; 0%, 7L, Je ™ 772 elwi =l
= 18: o', (— arg maxg , E[]Ilpy|x Y |X;:604.4)|Y, ¢
a 19: ﬂ,fl, — argmax, E[lnpyx(Y|X;0%,7.)|Y, ¢5]
2 20: end for
2. O = 9;
2: Al =4t
23: Vi Hl = 11 = Va,
t+1 o ) t+1
. . . 50 . . 24: Vv = (”5,:5‘73,,5 fz i"z D/
0 5 10 15 0 5 10 15 25: end for
mean p of A; mean u of A;

Fig. 2. CS with matrix uncertainty: Median NMSE (over 50 trials) on signal

c and uncertainty parameters b versus mean of matrices A; at M/N = 0.6. Qu estion: HOW to extend BAd -VAM P to
Figure 2 copied from [SFRS18] general nonlinear measurements ? -,



A Unified Inference Framework for GLM
O Bilinear Adaptive Generalized VAMP (BAd-GVAMP) [Mz18]

Po (X:6,) X  §(z-A(6)X) Z p(Y1Z:6,)
mX—>5(X) m2—>p (Z)
€

Factor graph of BGLM m,.,(Z)
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A Unified Inference Framework for GLM
O Bilinear Adaptive Generalized VAMP (BAd-GVAMP) [MZ18]

P (X:6,) X s(z-A(0)X) |, Z p(Y1Z:6,)
mx—>§(x) I m2—>p (Z)
—_— : —_—
| €
Factor graph of BGLM ! m,..(Z)

 Similar to GLM, using EP, the BGLM can be decoupled into two modules
L L
Z ext eXtI 1 _ 1 _ 1 t o eXt
mz—>p ( ) oC th_?L-./l/(z VA Al V ) ];][ mz_>p (ZI ) VgXt (t) VpOSt (t) VZXt (t _1) Zpos — |:Z| |Z :I

. _— ATORE ORI Y =Sy gy
My (Z) e [T A (21255 v2"1) R T =(Var[ 7| 233" )

=1

Proj, (m,.. (2,) [ 8(z,=A(6.)x M5 (% )dx, ) , Proj, (a,(z,))
mp—>Z(Z|) p—>z( )

m,s(X) has already been computed within BAd-VAMP as M; (X)) A/ (Xir,,1/ 7,,1) , then

(2
Z

. 5 Post — post
qA(ZI)OC'/‘/(ZI’ZA,I P Al )

t . ; I Gaussian with Proj, (qA (z, )) o /l/(zl ; ZK‘,)ft,VApOStI)
EE\(')'S :A(QA)[}/Z"I+7WA (QA)A (9 )] A (9) Scalar y Post _< 1 Trace(” post >
Z/pﬁst :A(QA)[Vz,ll +7 AT (QA)AT (9 ):I (72| A (9 ))7.) covariance matrix A M Al
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A Unified Inference Framework for GLM

O Bilinear Adaptive Generalized VAMP (BAd-GVAMP) [Mz18]
« Similar to GLM, using EP, the BGLM can be decoupled into two modules

{ ext }L Vo Component-wise

_%ZA" P MMSE

post ext ,ext
Zg, —E[Z| | Zn1 Vi :I

YZA(HA)X-FN {Zext}l‘ ’Vgxt Vgost :<Var[z, |Zi\X,t|fVZXt:|>

BAd-VAMP

Module A Module B

\_'_’

BAd-GVAMP [mz18]
« Relation of BAd-GVAMP to BAd-VAMP

v An extension of the BAd-VAMP [SFRS18] from linear measurements to nonlinear measurements.
v' The BAd-GVAMP iteratively reduces the original generalized bilinear recovery problem to a sequence

of standard bilinear recovery problems
v’ Note that the message passing schedule within BAd-VAMP module of BAd-GVAMP is slightly different

from that of the original BAd-VAMP
v" In the special case of linear measurements, BAd-GVAMP reduces to BAd-VAMP

[MZ18] X. Meng, and J. Zhu, “Bilinear Adaptive Generalized Vector Approximate Message Passing,”
arXiv preprint arXiv:1810.08129, 2018
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A Unified Inference Framework for GLM
O Bilinear Adaptive Generalized VAMP (BAd-GVAMP) [Mz18]

« Experiment 1: Quantized Compressed Sensing with matrix uncertainty

y =Q(A(b)c+w) A(b)=Ap+ i bi A

i=1
: . T .
{Ai}f:[} e RM*N are known, b are the unknown uncertainty parameters.
10 10 T T
_+—0raclelb%t, debiased, M/N =3 —|—b%h:nem'lb?1, debiased, M/N =3 A E”AC”Q
ST o SNR £ 10log 29 = 40 dB
- = B - oracle unquantized, M/N=1 0 bi]jnearuﬂquamized MN=1 w

i

v’ cis generated with uniformly random
support with K nonzero elements from
i.i.d N(0,1), we set N=256,G=10,K=10

v For M/N =1, the NMSE in dB is shown
in left figure:

-- converges fast (20-30 iterations)

-- the same as the oracle performance.

median NMSE of ¢ (dB)
median NMSE of b (dB)

-60 1 1 | -60 1 1
0 20 40 60 0 20 40 60

number of iterations mumber of iterations
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A Unified Inference Framework for GLM
O Bilinear Adaptive Generalized VAMP (BAd-GVAMP) [Mz18]

« Experiment 1: Quantized Compressed Sensing with matrix uncertainty

G
y = QA(b)c+w) A(b) = Ao+

(2

E""i Ai
1

{A;}5, € RMXN are known, b are the unknown uncertainty parameters,

A ElAc| _
SNR £ 10log Hi5s = 40 dB
v’ cis generated with uniformly random
support with K nonzero elements from
i.i.d N(0,1), we set N =256,G=10,K=10

o - m -2
) )
2 -
g ; v Then, the performance vs. ratio M/N is
2 - Z 30
2 Z evaluated:
g E -- as the increase of M/N, the recovery
L] — — H : ¥ .
=L ezt B 40 performance improves
= # —oracle 5 bit H H
2\ |- B —omele unquantized -- approaches the oracle in a wide

range of M/N values

—+—bilinear 1 bit. debiased

—O—bilinear 3 bit
—¥—bilinear 5 bit
—B—bilinear unquantized
—60 1 1 1 1 —60 1 1 1
02 04 0.6 0.8 1 0.2 0.4 0.6 0.8 1
sampling rate M/N sampling rate M/N

38



A Unified Inference Framework for GLM
O Bilinear Adaptive Generalized VAMP (BAd-GVAMP) [Mz18]

« Experiment 2: Self-Calibration from quantized measurements

G
Z bidiag(hi)‘ll] c+ w)
i=1

with known H € RM*G gnd & € RM*xN

y = Q(diag(Hb)Wec +w) = () (

Aim: to recover the K-sparse signal vector c and the calibration parameters b

10 v K=10,G =8, M =128 and SNR =40 dB.
v H is constructed using Q randomly selected columns

"OE ~ of the Hadamard matrix, the elements of b and ¥ are
— A -8 =) o o | ii-d.drawn from N(O; 1), and c is generated with K
o0 --- = .
Z OC----¢ nonzero elements i.i.d. drawn from N(O; 1).
4] i
W - .
2 — |béeT —be™||2
-~ f N F
2 40 |—6&—3bit bilinear = ¥ = 5bit oracle (b known)
= = © =3bit oracle (b known) == unquantized bilinear . . .
E | Sbit bilinear = B =unquantized (b known) v As the sampling rate increases, the median NMSE

500 - o - decreases. Also, the reconstruction performance

'''' G ---=8B_— improves as the bit-depth increases.
- __E - -
-60 : '
1 2 3 4 5 6
sampling rate M/N
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A Unified Inference Framework for GLM

O Bilinear Adaptive Generalized VAMP (BAd-GVAMP) [Mz18]

» Experiment 3: Structured dictionary learning from quantized measurements

median NMSE (dB)

The goal of dictionary learning is to find a dictionary matrix A € RM*N and a sparse matrix X &
RNV <L such that Y ~ AX for a given matrix Y € RM*L We consider structured dictionary A such that
&
A =3 b;A; with known {A;} |, where the elements of A; and b; are i.i.d. drawn from N(0,1) with

=1
GG = M = N = 64 in the structured case. Then the measurements are obtained as Y = Q(AX + W)

10 .
e 1 bt
on —C—3bit 1
—#— sbit v' G=M=N=64 and SNR = 40 dB.
ol =B~ unquantized| | ”A A_A_”Q
; : NMSE(A) £ min —E
o - sek AR
. T T 9T —e—9
301 \\\‘*—‘M v' As the training length L increases, the NMSE
40t decreases. And the structured dictionary can be

M learned from quantized measurements.
50t 1
-60 ' ' '

0 20 40 60 80 100
traming length L
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Conclusions

« Considers the design of efficient GLM inference algorithms
« Review the AMP algorithm and provides an EP perspective
« Present a unified approximate inference framework for GLM

Facilitates the extension of various SLM inference algorithms to GLM inference in a
simple and unified manner

Provides some new insights on some well-known algorithms, e.g., GAMP, thus offering
a flexible way in the message scheduling of practical implementation

Extend further to the bilinear GLM problem and propose the BAd-GVAMP, extending
BAd-VAMP to nonlinear measurements
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Conclusions

Considers the design of efficient GLM inference algorithms
Review the AMP algorithm and provides an EP perspective
Present a unified approximate inference framework for GLM

Facilitates the extension of various SLM inference algorithms to GLM inference in a
simple and unified manner

Provides some new insights on some well-known algorithms, e.g., GAMP, thus offering
a flexible way in the message scheduling of practical implementation

Extend further to the bilinear GLM problem and propose the BAd-GVAMP, extending
BAd-VAMP to nonlinear measurements

Possible future work

Theoretical analysis of this unified framework
Evaluate or analyze the effect of different ways of message scheduling for GLM

Design other efficient GLM inference algorithms from SLM ones

Extend to multi-layer neural network to see if it helps in the learning and/or inference process in
deep neural network.
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