Approximate Bayesian Inference for Generalized Linear Models: A Message Passing Approach

Xiangming Meng
Huawei Technologies Co. Ltd., Shanghai, China
mengxm11@gmail.com

Feb. 27, 2019
RIKEN AIP, Tokyo

Outline

- Problem Statement
- Standard Linear Models (SLM)
- Approximate message passing
- Generalized Linear Models (GLM)
- A unified inference framework
- Extension of GLM to Bilinear Models
- Bilinear adaptive vector AMP
- Conclusion

Problem Statement

\square Generalized Linear Models (GLM)

Unknown Signal/parameters
linear mixing
$\mathbf{x} \sim p_{0}(\mathbf{x}) \xrightarrow{\mathbf{x} \in \mathbb{R}^{N}} \mathbf{A} \in \mathbb{R}^{M \times N} \xrightarrow{\mathbf{z}=\mathbf{A x}} p\left(y_{a} \mid z_{a}\right) \longrightarrow \mathbf{y} \in \mathbb{R}^{M}$

- Goal

To infer the unknown signal/paremeters x from y and A

- Applications

\checkmark Information theory: channel estimation, multi-user detection, etc.
\checkmark Machine learning: linear regression, logistic regression, classification, etc.
\checkmark Signal processing: compressed sensing, image processing, etc.
\checkmark Many others...

Problem Statement

\square Standard Linear Models (SLM)

Special case of GLM:

When the likelihood is Gaussian, GLM reduces to SLM

Unknown
Signal/parameters
$\mathbf{X} \in \mathbb{R}^{N}$

Problem Statement

\square Standard Linear Models (SLM)

Special case of GLM:

When the likelihood is Gaussian, GLM reduces to SLM

Signal/parameneters	${ }_{\text {linear mixing }} \quad \mathbf{n} \in \mathbb{R}^{M}$	
$\mathbf{x} \in \mathbb{R}^{N}$	$\mathbf{A} \in \mathbb{R}^{M \times N}$	
$\mathbf{x} \sim p_{0}(\mathbf{x})$	$\mathbf{y}=\mathbf{A x}+\mathbf{n}$	$\mathbf{n} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$

This is one fundamental model for linear inverse problem in science and engineering

Problem Statement

\square Generalized Bilinear Models

Extended case of GLM:

The linear matrix A is also unknown or with uncertainty

- Goal

To jointly infer matrix X and A , given Y with unknown parameters θ_{X}, θ_{Y}

Problem Statement

\square Generalized Bilinear Models

Extended case of GLM:

The linear matrix A is also unknown or with uncertainty

- Goal

Matrix recovery
To jointly infer matrix X and A , given Y with unknown parameters θ_{X}, θ_{Y} problem

Problem Statement

- Generalized Bilinear Models

Extended case of GLM:

The linear matrix A is also unknown or with uncertainty

$$
\mathbf{X} \sim p_{0}\left(\mathbf{X} ; \theta_{X}\right) \xrightarrow{\mathbf{X} \in \mathbb{R}^{N \times L}} \mathbf{A} \text { (unkear mixing } \quad \mathbf{A} \text { (unknown) } \underset{\mathbf{Z}=\mathbf{A X}}{\mathbf{Z} \in \mathbb{R}^{M \times L}}{ }^{\text {Probabilistic mapping }} \quad p\left(\mathbf{Y} \mid \mathbf{Z} ; \theta_{Y}\right) \longrightarrow \mathbf{O} \quad \text { Observations }
$$

- Goal

To jointly infer matrix \mathbf{X} and A , given Y with unknown parameters θ_{X}, θ_{Y} problem

- Applications
\checkmark Machine learning: Probabilistic PCA, linear factor model, matrix factorization, matrix completion, etc.
\checkmark Signal processing: compressed sensing with matrix uncertainty, dictionary learning, etc.
\checkmark Other matrix recovery problems...

Problem Statement

- Generalized Bilinear Models

Extended case of GLM:

The linear matrix A is also unknown or with uncertainty

$$
\mathbf{X} \sim p_{0}\left(\mathbf{X} ; \theta_{X}\right) \xrightarrow{\mathbf{X} \in \mathbb{R}^{N \times L}} \mathbf{A} \text { (unknoar mixing } \quad \underset{\mathbf{Z}=\mathbf{A X}}{\mathbf{Z} \in \mathbb{R}^{M \times L}} \quad \begin{gathered}
\text { Probabilistic mapping } \\
p\left(\mathbf{Y} \mid \mathbf{Z} ; \theta_{Y}\right)
\end{gathered} \quad \text { Observations }
$$

- Goal

Matrix recovery
To jointly infer matrix X and A , given Y with unknown parameters θ_{X}, θ_{Y} problem

- Applications
\checkmark Machine learning: Probabilistic PCA, linear factor model, matrix factorization, matrix completion, etc.
\checkmark Signal processing: compressed sensing with matrix uncertainty, dictionary learning, etc.
\checkmark Other matrix recovery problems...
Bilinear recovery is much more difficult than original GLM since the linear mixing matrix is also unknown

"If you can't solve a problem, then there is an easier problem you can solve: find it." -George Pólya

I. Standard Linear Models

(George Pólya: 1887-1985)

Standard Linear Models

\square System Model

Signal of interest $\mathbf{x} \in \mathbb{R}^{N}$

$$
\mathbf{x} \sim p_{0}(\mathbf{x}) \quad \mathbf{y}=\mathbf{A} \mathbf{x}+\mathbf{n} \quad \mathbf{n} \sim \mathcal{N}\left(0, \sigma^{2} I\right)
$$

- Classical Methods

- Least Squares Learning (LS)

$$
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|^{2} \quad \hat{\mathbf{x}}_{L S}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{y}
$$

- Regularized LS Learning
$\checkmark \mathbf{L 2} \quad \hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{A x}\|^{2}+\frac{\lambda}{2}\|\mathbf{x}\|_{2}^{2} \quad \hat{\mathbf{x}}_{L 2}=\left(\mathbf{A}^{T} \mathbf{A}+\lambda \mathbf{I}\right)^{-1} \mathbf{A}^{T} \mathbf{y}$
$\checkmark \mathbf{L 1} \hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|^{2}+\lambda\|\mathbf{x}\|_{1} \quad$ Iterative soft threshold algorithm (ISTA)

Standard Linear Models

\square System Model

Signal of interest

$$
\mathbf{x} \sim p_{0}(\mathbf{x}) \quad \mathbf{y}=\mathbf{A x}+\mathbf{n} \quad \mathbf{n} \sim \mathcal{N}\left(0, \sigma^{2} I\right)
$$

- Classical Methods

- Least Squares Learning (LS)

$$
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|^{2} \quad \hat{\mathbf{x}}_{L S}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{y}
$$

- Regularized LS Learning

$$
\begin{array}{lll}
\checkmark \mathbf{L 2} \hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{A x}\|^{2}+\frac{\lambda}{2}\|\mathbf{x}\|_{2}^{2} & \hat{\mathbf{x}}_{L 2}=\left(\mathbf{A}^{T} \mathbf{A}+\lambda \mathbf{I}\right)^{-1} \mathbf{A}^{T} \mathbf{y} \\
\checkmark \mathbf{L 1} \hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{A x}\|^{2}+\lambda\|\mathbf{x}\|_{1} & \text { Iterative soft threshold algorithm (ISTA) }
\end{array}
$$

- Limits

- Can not provide uncertainty estimates
- Poor performance with improper regularization
- High complexity even with closed-form solutions
- Slow convergence rate with stochastic or iterative methods

Standard Linear Models

\square System Model

Signal of interest

$$
\mathbf{x} \sim p_{0}(\mathbf{x}) \quad \mathbf{y}=\mathbf{A x}+\mathbf{n} \quad \mathbf{n} \sim \mathcal{N}\left(0, \sigma^{2} I\right)
$$

- Classical Methods

- Least Squares Learning (LS)

$$
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{A x}\|^{2} \quad \hat{\mathbf{x}}_{L S}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{y}
$$

- Regularized LS Learning

$$
\begin{array}{lll}
\checkmark \mathbf{L 2} \hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{A x}\|^{2}+\frac{\lambda}{2}\|\mathbf{x}\|_{2}^{2} & \hat{\mathbf{x}}_{L 2}=\left(\mathbf{A}^{T} \mathbf{A}+\lambda \mathbf{I}\right)^{-1} \mathbf{A}^{T} \mathbf{y} \\
\checkmark \mathbf{L 1} \hat{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\|\mathbf{y}-\mathbf{A x}\|^{2}+\lambda\|\mathbf{x}\|_{1} & \text { Iterative soft threshold algorithm (ISTA) }
\end{array}
$$

- Limits

- Can not provide uncertainty estimates
- Poor performance with improper regularization
- High complexity even with closed-form solutions
- Slow convergence rate with stochastic or iterative methods

Standard Linear Models

- Exact Bayesian Inference

According to the Bayes' rule, the posterior distribution can be computed as

$$
\begin{aligned}
& p(\mathbf{x} \mid \mathbf{y})=\frac{p_{0}(\mathbf{x}), p(\mathbf{y} \mid \mathbf{x})}{\int p_{0}(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x}) d \mathbf{x}} \\
& \text { prior likelihood }
\end{aligned}
$$

Standard Linear Models

- Exact Bayesian Inference

According to the Bayes' rule, the posterior distribution can be computed as

$$
p(\mathbf{x} \mid \mathbf{y})=\frac{p_{0}(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x})}{\int p_{0}(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x}) d \mathbf{x}} \xrightarrow{\text { marginalization }} p\left(x_{i} \mid \mathbf{y}\right)=\int_{-x_{i}} p(\mathbf{x} \mid \mathbf{y}) \mathbf{d} \mathbf{x}_{i i}
$$

$$
\text { Posterior mean } \quad \hat{x}_{i}^{\text {MMSE }}=\int x_{i} p\left(x_{i} \mid y\right) d x_{i}
$$

Posterior variance

$$
v_{i}^{M M S E}=\int x_{i}^{2} p\left(x_{i} \mid \mathbf{y}\right) d x_{i}-\left(\hat{x}_{i}^{M M S E}\right)^{2}
$$

Minimum mean square Error (MMSE) estimate

Standard Linear Models

- Exact Bayesian Inference

According to the Bayes' rule, the posterior distribution can be computed as

$$
p(\mathbf{x} \mid \mathbf{y})=\frac{p_{0}(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x})}{p_{0}(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x}) d \mathbf{x}} \stackrel{\text { marginalization }}{ } \quad p\left(x_{i} \mid \mathbf{y}\right)=\int_{*} p(\mathbf{x} \mid \mathbf{y}) \mathrm{d} \mathbf{x}_{1 i}
$$

Posterior mean $\quad \hat{X}_{i}^{M M S E}=\int x_{i} p\left(x_{i} \mid \mathbf{y}\right) d x_{i}$
Posterior variance

$$
v_{i}^{M M S E}=\int x_{i}^{2} p\left(x_{i} \mid \mathbf{y}\right) d x_{i}-\left(\hat{x}_{i}^{M M S E}\right)^{2}
$$

Minimum mean square Error (MMSE) estimate
\checkmark No closed-form solutions
There are no closed-form solutions for general problems

\checkmark Curse of Dimensionality: Intractable due to high-dimensional integration/summation

Standard Linear Models

- Exact Bayesian Inference

According to the Bayes' rule, the posterior distribution can be computed as

$$
p(\mathbf{x} \mid \mathbf{y})=\frac{p_{0}(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x})}{p_{0}(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x}) d \mathbf{x}} \xrightarrow{\text { marginalization }} p\left(x_{i} \mid \mathbf{y}\right) \in \int_{*} p(\mathbf{x} \mid \mathbf{y}) \mathrm{d} \mathbf{x}_{i}
$$

Posterior mean $\quad \hat{X}_{i}^{M M S E}=\int X_{i} p\left(x_{i} \mid \mathbf{y}\right) d x_{i}$
Posterior variance

$$
v_{i}^{M M S E}=\int x_{i}^{2} p\left(x_{i} \mid \mathbf{y}\right) d x_{i}-\left(\hat{x}_{i}^{M M S E}\right)^{2}
$$

Minimum mean square Error (MMSE) estimate
\checkmark No closed-form solutions
There are no closed-form solutions for general problems
\checkmark Curse of Dimensionality: Intractable due to high-dimensional integration/summation

Standard Linear Models

- Graphical Models and Message Passing

"Graphical Models are a marriage between probability theory and graph theory."
-Michael I. Jordan
Intuitively, graphical models expresses the probabilistic relationship, i.e., conditional dependence structure between random variables.

HMM (directed models)

MRF(undirected models)

Standard Linear Models

- Graphical Models and Message Passing

"Graphical Models are a marriage between probability theory and graph theory."
-Michael I. Jordan
Intuitively, graphical models expresses the probabilistic relationship, i.e., conditional dependence structure between random variables.

HMM (directed models)
Kalman filtering/Viterbi algorithm

MRF(undirected models)
Belief propagation

Graphical Models not only provide a rich framework for representing highdimensional statistical models, and more importantly, fascinates the design of efficient inference algorithm (e.g., message passing) in a principled manner.

Standard Linear Models

- Expectation Propagation (EP) [Minka01] [Opper05]

$$
P(\mathbf{x})=\prod_{a} f_{a}(\mathbf{x}) \quad \text { approximated as } q(\mathbf{x})=\prod_{a} \tilde{f}_{a}(\mathbf{x})
$$

Standard Linear Models

- Expectation Propagation (EP) [Minka01] [Opper05]

$$
p(\mathbf{x})=\prod_{a} f_{a}(\mathbf{x}) \xrightarrow{\text { approximated as }} \quad q(\mathbf{x})=\prod_{a} \tilde{f}_{a}(\mathbf{x})
$$

$$
q(\mathbf{x})=\operatorname{Pro}_{\Phi} \mathrm{j}(p(\mathbf{x}))
$$

Optimization objective: $\quad \min K L(p(\mathbf{x}) \| q(\mathbf{x})) \quad q(\boldsymbol{x})=h(\boldsymbol{x}) \exp \left\{\boldsymbol{\theta}^{T} \phi(\boldsymbol{x})+g(\boldsymbol{\theta})\right\}$

Standard Linear Models

\square Expectation Propagation (EP) [Minka01] [Opper05]

$$
p(\mathbf{x})=\prod_{a} f_{a}(\mathbf{x}) \xrightarrow{\text { approximated as }} \quad q(\mathbf{x})=\prod_{a} \tilde{f}_{a}(\mathbf{x})
$$

$$
q(\mathbf{x})=\operatorname{Pro}_{\Phi} \mathrm{j}(p(\mathbf{x}))
$$

Optimization objective: $\quad \min K L(p(\mathbf{x}) \| q(\mathbf{x})) \quad q(\boldsymbol{x})=h(\boldsymbol{x}) \exp \left\{\boldsymbol{\theta}^{T} \phi(\boldsymbol{x})+g(\boldsymbol{\theta})\right\}$

Iterative local optimization

Iteratively refine each factor

$$
\tilde{f}_{a}(\mathbf{x})=\underset{t(\mathbf{x}) \in \Phi}{\arg \min } K L\left(f_{a}(\mathbf{x}) \prod_{b \neq a} \tilde{f}_{b}(\mathbf{x}) \| t(\mathbf{x}) \prod_{b \neq a} \tilde{f}_{b}(\mathbf{x})\right)
$$

Standard Linear Models

\square Expectation Propagation (EP) [Minka01] [Opper05]

$$
p(\mathbf{x})=\prod_{a} f_{a}(\mathbf{x}) \xrightarrow{\text { approximated as }} q(\mathbf{x})=\prod_{a} \tilde{f}_{a}(\mathbf{x})
$$

$$
q(\mathbf{x})=\operatorname{Pro}_{\Phi} \mathrm{j}(p(\mathbf{x}))
$$

Optimization objective: $\quad \min K L(p(\mathbf{x}) \| q(\mathbf{x})) \quad q(\boldsymbol{x})=h(\boldsymbol{x}) \exp \left\{\boldsymbol{\theta}^{T} \phi(\boldsymbol{x})+g(\boldsymbol{\theta})\right\}$

Iteratively refine each factor

$$
\tilde{f}_{a}(\mathbf{x})=\underset{t(\mathbf{x}) \in \Phi}{\arg \min } K L\left(f_{a}(\mathbf{x}) \prod_{b \neq a} \tilde{f}_{b}(\mathbf{x}) \| t(\mathbf{x}) \prod_{b \neq a} \tilde{f}_{b}(\mathbf{x})\right)
$$

- Variational inference (VI) minimizes $K L(q \| p)$ while EP minimizes $K L(p|\mid q)$
- EP is one kind of iterative fixed-point algorithm
- EP can be also implemented as message passing on factor graph

Standard Linear Models

- Expectation propagation [Minka01] [Opper05]

Factor Graph is one kind of bipartite graph which represents the factorization of a distribution where

- Circles represent random variables
- Squares represent compatibility functions
- One circle x connects one square f if and only if f is a function of x

$$
p(\mathbf{x})=f_{1}\left(x_{1}\right) f_{2}\left(x_{1}, x_{2}\right) f_{3}\left(x_{2}, x_{3}, x_{4}\right)
$$

Standard Linear Models

- Expectation propagation [Minka01] [Opper05]

Factor Graph is one kind of bipartite graph which represents the factorization of a distribution where

- Circles represent random variables
- Squares represent compatibility functions
- One circle x connects one square f if and only if f is a function of x
$p(\mathbf{x})=f_{1}\left(x_{1}\right) f_{2}\left(x_{1}, x_{2}\right) f_{3}\left(x_{2}, x_{3}, x_{4}\right)$

Local message passing for general factor graph

Standard Linear Models

- Expectation propagation [Minka01] [Opper05]

Factor Graph is one kind of bipartite graph which represents the factorization of a distribution where

- Circles represent random variables
- Squares represent compatibility functions
- One circle x connects one square f if and only if f is a function of x
$p(\mathbf{X})=f_{1}\left(x_{1}\right) f_{2}\left(x_{1}, x_{2}\right) f_{3}\left(x_{2}, X_{3}, x_{4}\right)$

Local message passing for general factor graph

Standard Linear Models

- Expectation propagation [Minka01] [Opper05]

Factor Graph is one kind of bipartite graph which represents the factorization of a distribution where

- Circles represent random variables
- Squares represent compatibility functions
- One circle x connects one square f if and only if f is a function of x
$p(\mathbf{x})=f_{1}\left(x_{1}\right) f_{2}\left(x_{1}, x_{2}\right) f_{3}\left(x_{2}, x_{3}, x_{4}\right)$

Expectation Propagation (EP)

$$
\operatorname{Proj}_{\Phi}\left[m_{i \rightarrow a}\left(x_{i}\right) \int f_{a}\left(\mathbf{x}_{a}\right) \quad \prod \quad m_{j \rightarrow a}\left(x_{j}\right) d \mathbf{x}_{a \backslash \backslash}\right]
$$

Factor to node:

$$
m_{a \rightarrow i}\left(x_{i}\right) \propto \frac{j \in N(a), j \neq i}{m_{i \rightarrow a}\left(x_{i}\right)}
$$

Local message passing for general factor graph

Standard Linear Models

- Expectation propagation [Minka01] [Opper05]

Factor Graph is one kind of bipartite graph which represents the factorization of a distribution where

- Circles represent random variables
- Squares represent compatibility functions
- One circle x connects one square f if and only if f is a function of x
$p(\mathbf{x})=f_{1}\left(x_{1}\right) f_{2}\left(x_{1}, x_{2}\right) f_{3}\left(x_{2}, x_{3}, x_{4}\right)$

Local message passing for general factor graph

Standard Linear Models

- Expectation propagation [Minka01] [Opper05]

Factor Graph is one kind of bipartite graph which represents the factorization of a distribution where

- Circles represent random variables
- Squares represent compatibility functions
- One circle x connects one square f if and only if f is a function of x

$$
p(\mathbf{x})=f_{1}\left(x_{1}\right) f_{2}\left(x_{1}, x_{2}\right) f_{3}\left(x_{2}, x_{3}, x_{4}\right)
$$

Local message passing for general factor graph

Expectation Propagation (EP)

$$
\operatorname{Proj}_{\Phi}\left[m_{i \rightarrow a}\left(x_{i}\right) \int f_{a}\left(\mathbf{x}_{a}\right) \quad \prod \quad m_{j \rightarrow a}\left(x_{j}\right) d \mathbf{x}_{a \backslash i}\right]
$$

Factor to node:

$$
\text { Node to factor: } \quad m_{i \rightarrow a}\left(x_{i}\right) \propto \prod_{b \in N(i), b \neq a} m_{b \rightarrow i}\left(x_{i}\right)
$$

Standard Linear Models

- Expectation propagation [Minka01] [Opper05]

Factor Graph is one kind of bipartite graph which represents the factorization of a distribution where

- Circles represent random variables
- Squares represent compatibility functions
- One circle x connects one square f if and only if f is a function of x

$$
p(\mathbf{x})=f_{1}\left(x_{1}\right) f_{2}\left(x_{1}, x_{2}\right) f_{3}\left(x_{2}, x_{3}, x_{4}\right)
$$

$$
m_{a \rightarrow i}\left(x_{i}\right)
$$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { Expectation Propagation (EP) } \\
\text { Factor to node: } \quad m_{a \rightarrow i}\left(x_{i}\right) \propto \frac{\operatorname{Proj}_{\Phi}\left[m_{i \rightarrow a}\left(x_{i}\right) \int f_{a}\left(\mathbf{x}_{a}\right) \prod_{j \in N(a), j \neq i} m_{j \rightarrow a}\left(x_{j}\right) d \mathbf{x}_{a \backslash i}\right]}{m_{i \rightarrow a}\left(x_{i}\right)}
\end{array} .
\end{aligned}
$$

Node to factor: $m_{i \rightarrow a}\left(x_{i}\right) \propto \prod_{b \in N(i), b \neq a} m_{b \rightarrow i}\left(x_{i}\right)$

$$
m_{i \rightarrow a}\left(x_{i}\right) \propto \prod_{b \in N(i), b \neq a} m_{b \rightarrow i}\left(x_{i}\right)
$$

Local message passing for general factor graph

After convergence or a maximum number of iterations, the marginal distribution is the product of all the incoming messages from neighboring factors

$$
m_{i}\left(x_{i}\right) \propto \prod_{b \in N(i)} m_{b \rightarrow i}\left(x_{i}\right)
$$

Standard Linear Models

- Factor Graph of the SLM

For the SLM, the posterior distribution can be factorized as follows

$$
p(\mathbf{x} \mid \mathbf{y}) \propto \prod_{i=1}^{N} p_{0}\left(x_{i}\right) \prod_{a=1}^{M} \underbrace{\mathcal{N}\left(y_{a} ; \mathbf{a}^{T} \mathbf{x}, \sigma^{2}\right)}_{f_{a}}
$$

Standard Linear Models

- Factor Graph of the SLM

For the SLM, the posterior distribution can be factorized as follows

$$
p(\mathbf{x} \mid \mathbf{y}) \propto \prod_{i=1}^{N} p_{0}\left(x_{i}\right) \prod_{a=1}^{M} \underbrace{\mathcal{N}\left(y_{a} ; \mathbf{a}^{T} \mathbf{x}, \sigma^{2}\right.}_{\stackrel{f_{a}}{ }})
$$

Expectation Propagation (EP)

$$
\begin{gathered}
\propto \frac{\operatorname{Proj}_{\Phi}\left[m_{i \rightarrow a}^{t}\left(x_{i}\right) \int \prod_{j \neq i} m_{j \rightarrow a}^{t}\left(x_{j}\right) p\left(y_{a} \mid \mathbf{x}\right)\right]}{m_{i \rightarrow a}^{t}\left(x_{i}\right)} \\
\propto \frac{\operatorname{Pro}_{\Phi}\left[p_{0}\left(x_{i}\right) \prod_{b} m_{b \rightarrow i}^{t}\left(x_{i}\right)\right]}{m_{a \rightarrow i}^{t}\left(x_{i}\right)}
\end{gathered}
$$

Standard Linear Models

- Factor Graph of the SLM

For the SLM, the posterior distribution can be factorized as follows

$$
p(\mathbf{x} \mid \mathbf{y}) \propto \prod_{i=1}^{N} p_{0}\left(x_{i}\right) \prod_{a=1}^{M} \underbrace{\mathcal{N}\left(y_{a} ; \mathbf{a}^{T} \mathbf{x}, \sigma^{2}\right)}_{f_{a}}
$$

Expectation Propagation (EP)

The projection set Φ is chosen to be Gaussian distribution so that the messages become Gaussian distribution

Standard Linear Models

■ An EP Perspective on AMP

$$
\begin{aligned}
m_{a \rightarrow i}^{t}\left(x_{i}\right) & \propto \mathcal{N}\left(x_{i} ; \hat{x}_{a \rightarrow i}^{t}, v_{a \rightarrow i}^{t}\right) \\
m_{i \rightarrow a}^{t+1}\left(x_{i}\right) & \propto \mathcal{N}\left(x_{i} ; \hat{x}_{i \rightarrow a}^{t+1}, v_{i \rightarrow a}^{t+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& V_{a \rightarrow i}^{t}=\sum_{j \neq i}\left|A_{a j}\right|^{2} \nu_{j \rightarrow a}^{t} \quad Z_{a \rightarrow i}^{t}=\sum_{j \neq i} A_{a j} \hat{x}_{j \rightarrow a}^{t} \\
& \hat{x}_{a \rightarrow i}^{t}=\frac{y_{a}-Z_{a \rightarrow i}^{t}, v_{a \rightarrow i}^{t}=\frac{\sigma^{2}+V_{a \rightarrow i}^{t}}{A_{a i}}}{\left|A_{a i}\right|^{2}} \\
& \Sigma_{i}^{t}=\left[\sum_{a} \frac{\left|A_{a i}\right|^{2}}{\sigma^{2}+V_{a \rightarrow i}^{t}}\right]^{-1} \quad R_{i}^{t}=\Sigma_{i}^{t} \sum_{a} \frac{A_{a i}^{*}\left(y_{a}-Z_{a \rightarrow i}^{t}\right)}{\sigma^{2}+V_{a \rightarrow i}^{t}} \\
& \hat{x}_{i}^{t+1}=f_{a}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \quad \hat{\nu}_{i}^{t+1}=f_{c}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \\
& \frac{1}{\nu_{i \rightarrow a}^{t+1}}=\frac{1}{\nu_{i}^{t+1}}-\frac{\left|A_{a i}\right|^{2}}{\sigma^{2}+V_{a \rightarrow i}^{t}}, \\
& \hat{x}_{i \rightarrow a}^{t+1}=\nu_{i \rightarrow a}^{t+1}\left(\frac{\hat{x}_{i}^{t+1}}{\nu_{i}^{t+1}}-\frac{A_{a i}^{*}\left(y_{a}-Z_{a \rightarrow i}^{t}\right)}{\sigma^{2}+V_{a \rightarrow i}^{t}}\right) .
\end{aligned}
$$

Standard Linear Models

- An EP Perspective on AMP

$$
\begin{aligned}
m_{a \rightarrow i}^{t}\left(x_{i}\right) & \propto \mathcal{N}\left(x_{i} ; \hat{x}_{a \rightarrow i}^{t}, v_{a \rightarrow i}^{t}\right) \\
m_{i \rightarrow a}^{t+1}\left(x_{i}\right) & \propto \mathcal{N}\left(x_{i} ; \hat{x}_{i \rightarrow a}^{t+1}, v_{i \rightarrow a}^{t+1}\right)
\end{aligned}
$$

- However, the number of messages are $O(M N)$, which is still intractable for high-dimensional problems

$$
\begin{aligned}
& V_{a \rightarrow i}^{t}=\sum_{j \neq i}\left|A_{a j}\right|^{2} \nu_{j \rightarrow a}^{t} \quad Z_{a \rightarrow i}^{t}=\sum_{j \neq i} A_{a j} \hat{x}_{j \rightarrow a}^{t} \\
& \hat{x}_{a \rightarrow i}^{t}=\frac{y_{a}-Z_{a \rightarrow i}^{t}}{A_{a i}}, v_{a \rightarrow i}^{t}=\frac{\sigma^{2}+V_{a \rightarrow i}^{t}}{\left|A_{a i}\right|^{2}} \\
& \Sigma_{i}^{t}=\left[\sum_{a} \frac{\left|A_{a i}\right|^{2}}{\sigma^{2}+V_{a \rightarrow i}^{t}}\right]^{-1} R_{i}^{t}=\Sigma_{i}^{t} \sum_{a} \frac{A_{a i}^{*}\left(y_{a}-Z_{a \rightarrow i}^{t}\right)}{\sigma^{2}+V_{a \rightarrow i}^{t}} \\
& \hat{x}_{i}^{t+1}=f_{a}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \quad \hat{\nu}_{i}^{t+1}=f_{c}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \\
& \frac{1}{\nu_{i \rightarrow a}^{t+1}}=\frac{1}{\nu_{i}^{t+1}}-\frac{\left|A_{a i}\right|^{2}}{\sigma^{2}+V_{a \rightarrow i}^{t}}, \quad \text { Still Too } \\
& \hat{x}_{i \rightarrow a}^{t+1}=\nu_{i \rightarrow a}^{t+1}\left(\frac{\hat{x}_{i}^{t+1}}{\nu_{i}^{t+1}}-\frac{A_{a i}^{*}(y}{\sigma^{2}}\right. \text { Complicated! }
\end{aligned}
$$

Standard Linear Models

- An EP Perspective on AMP

$$
\begin{aligned}
m_{a \rightarrow i}^{t}\left(x_{i}\right) & \propto \mathcal{N}\left(x_{i} ; \hat{x}_{a \rightarrow i}^{t}, v_{a \rightarrow i}^{t}\right) \\
m_{i \rightarrow a}^{t+1}\left(x_{i}\right) & \propto \mathcal{N}\left(x_{i} ; \hat{x}_{i \rightarrow a}^{t+1}, v_{i \rightarrow a}^{t+1}\right)
\end{aligned}
$$

- However, the number of messages are $O(M N)$, which is still intractable for high-dimensional problems
- To reduce the number of messages, neglecting the high-order terms in large system limits

$$
\begin{aligned}
& Z_{a}^{t}=\sum_{i} A_{a i} \hat{x}_{i \rightarrow a}^{t} \quad V_{a}^{t}=\sum_{i}\left|A_{a i}\right|^{2} \nu_{i \rightarrow a}^{t} \\
& Z_{a \rightarrow i}^{t}=Z_{a}^{t}-A_{a i} \hat{x}_{i \rightarrow a}^{t}, \\
& V_{a \rightarrow i}^{t}=V_{a}^{t}-\left.A_{a i}\right|^{2} \nu_{i \rightarrow a}^{t} \\
& \text { Be careful! } \\
& V_{a \rightarrow i}^{t} \approx V_{a}^{t} \\
& \nu_{i \rightarrow a}^{t+1} \approx \nu_{i}^{t+1} \quad V_{a}^{t} \approx \sum_{i}\left|A_{a i}\right|^{2} \nu_{i}^{t}
\end{aligned}
$$

$$
\begin{aligned}
& V_{a \rightarrow i}^{t}=\sum_{j \neq i}\left|A_{a j}\right|^{2} \nu_{j \rightarrow a}^{t} \quad Z_{a \rightarrow i}^{t}=\sum_{j \neq i} A_{a j} \hat{x}_{j \rightarrow a}^{t} \\
& \hat{x}_{a \rightarrow i}^{t}=\frac{y_{a}-Z_{a \rightarrow i}^{t}}{A_{a i}}, v_{a \rightarrow i}^{t}=\frac{\sigma^{2}+V_{a \rightarrow i}^{t}}{\left|A_{a i}\right|^{2}} \\
& \Sigma_{i}^{t}=\left[\sum_{a} \frac{\left|A_{a i}\right|^{2}}{\sigma^{2}+V_{a \rightarrow i}^{t}}\right]^{-1} R_{i}^{t}=\Sigma_{i}^{t} \sum_{a} \frac{A_{a i}^{*}\left(y_{a}-Z_{a \rightarrow i}^{t}\right)}{\sigma^{2}+V_{a \rightarrow i}^{t}} \\
& \hat{x}_{i}^{t+1}=f_{a}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \quad \hat{\nu}_{i}^{t+1}=f_{c}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \\
& \frac{1}{\nu_{i \rightarrow a}^{t+1}}=\frac{1}{\nu_{i}^{t+1}}-\frac{\left|A_{a i}\right|^{2}}{\sigma^{2}+V_{a \rightarrow i}^{t}}, \quad \text { Still Too } \\
& \hat{x}_{i \rightarrow a}^{t+1}=\nu_{i \rightarrow a}^{t+1}\left(\frac{\hat{x}_{i}^{t+1}}{\nu_{i}^{t+1}}-\frac{A_{a i}^{*}(y}{\sigma^{2}} \quad\right. \text { Complicated! }
\end{aligned}
$$

Standard Linear Models

■ An EP Perspective on AMP

$$
\begin{aligned}
m_{a \rightarrow i}^{t}\left(x_{i}\right) & \propto \mathcal{N}\left(x_{i} ; \hat{x}_{a \rightarrow i}^{t}, v_{a \rightarrow i}^{t}\right) \\
m_{i \rightarrow a}^{t+1}\left(x_{i}\right) & \propto \mathcal{N}\left(x_{i} ; \hat{x}_{i \rightarrow a}^{t+1}, v_{i \rightarrow a}^{t+1}\right)
\end{aligned}
$$

- However, the number of messages are $O(M N)$, which is still intractable for high-dimensional problems
- To reduce the number of messages, neglecting the high-order terms in large system limits

$$
\begin{aligned}
& Z_{a}^{t}=\sum_{i} A_{a i} \hat{x}_{i \rightarrow a}^{t} \quad V_{a}^{t}=\sum_{i}\left|A_{a i}\right|^{2} \nu_{i \rightarrow a}^{t} \\
& Z_{a \rightarrow i}^{t}=Z_{a}^{t}-A_{a i} \hat{x}_{i \rightarrow a}^{t}, \quad \text { Be careful! } \\
& V_{a \rightarrow i}^{t}=V_{a}^{t}-\left|A_{a i}\right|^{2} \nu_{i \rightarrow a}^{t} \\
& V_{a \rightarrow i}^{t} \approx V_{a}^{t} \\
& \nu_{i \rightarrow a}^{t+1} \approx \nu_{i}^{t+1} \square V_{a}^{t} \approx \sum_{i}\left|A_{a i}\right|^{2} \nu_{i}^{t}
\end{aligned}
$$

- After some algebra, we obtain the famous approximate message passing (AMP) algorithm.
X. Meng, S. Wu, L. Kuang, and J. Lu, "An expectation propagation perspective on approximate message passing," IEEE Signal Processing Letters, vol. 22, no. 8, pp. 1194-1197, Aug. 2015.

Standard Linear Models

■ An EP Perspective on AMP

AMP iteratively decouples the original vector inference problem to scalar inference problems

$$
\mathbf{y}=\mathbf{A x}+\mathbf{n} \quad \text { decoupled }\left\{\begin{array}{l}
R_{1}=x_{1}+\tilde{n}_{1} \\
\vdots \\
R_{N}=x_{N}+\tilde{n}_{N}
\end{array} \quad\right. \text { decoupling principle }
$$

Standard Linear Models

■ An EP Perspective on AMP

AMP iteratively decouples the original vector inference problem to scalar inference problems

$$
\mathbf{y}=\mathbf{A x}+\mathbf{n} \quad \begin{aligned}
& \text { decoupled } \\
& R_{1}=x_{1}+\tilde{n}_{1} \\
& \vdots \\
& R_{N}=x_{N}+\tilde{n}_{N}
\end{aligned} \quad \text { decoupling principle }
$$

- Notes of AMP
\checkmark For i.i.d. Gaussian A, AMP is proved to be asymptotically
Bayesian optimal and rigorously analyzed via state evolution
(SE) [BM11]
\checkmark For general matrices A, AMP may diverge [BM11]
\checkmark Vector AMP (VAMP) converges for right-rotationally
invariant matrices [RSF16]

Standard Linear Models

\square An EP Perspective on AMP

AMP iteratively decouples the original vector inference problem to scalar inference problems

$$
\begin{aligned}
& \mathbf{y}=\mathbf{A x}+\mathbf{n} \xrightarrow{\text { decoupled }}\left\{\begin{array}{l}
R_{1}=x_{1}+\tilde{n}_{1} \\
\vdots \\
R_{N}=x_{N}+\tilde{n}_{N}
\end{array} \quad\right. \text { decoupling principle }
\end{aligned}
$$

- Notes of AMP

\checkmark For i.i.d. Gaussian A, AMP is proved to be asymptotically
Bayesian optimal and rigorously analyzed via state evolution
(SE) [BM11]
\checkmark For general matrices A, AMP may diverge [BM11]
\checkmark Vector AMP (VAMP) converges for right-rotationally
invariant matrices [RSF16]

- The EP perspective of AMP:

\checkmark Explicitly establishing the relationship between AMP and EP for the first time
\checkmark Simplifying the extension of AMP to the complex-valued AMP (simply using circularlysymmetric Gaussian) [MWKL15b]
\checkmark Providing a unified view of AMP and VAMP (derived from scalar EP [MWKL15a] and vector EP [RSF16], respectively)
X. Meng, S. Wu, L. Kuang, and J. Lu, "An expectation propagation perspective on approximate message passing," IEEE Signal Processing Letters, vol. 22, no. 8, pp. 1194-1197, Aug. 2015.

Standard Linear Models

\square An EP Perspective on AMP

AMP iteratively decouples the original vector inference problem to scalar inference problems

$$
\begin{aligned}
& \mathbf{y}=\mathbf{A x}+\mathbf{n} \quad\left\{\begin{array}{l}
R_{1}=x_{1}+\tilde{n}_{1} \\
\vdots \\
R_{N}=x_{N}+\tilde{n}_{N}
\end{array}\right. \\
& \text { s of AMP } \\
& \text { or i.i.d. Gaussian A, AMP is proved to be asymptotically } \\
& \text { esian optimal and rigorously analyzed via state evolution } \\
& \text { [BM11] } \\
& \text { or general matrices A, AMP may diverge [BM11] Taylor factor graph facto graph } \\
& \text { ector AMP (VAMP) converges for right-rotationally } \\
& \text { ariant matrices [RSF16] }
\end{aligned}
$$

- The EP perspective of AMP:

\checkmark Explicitly establishing the relationship between AMP and EP for the first time
\checkmark Simplifying the extension of AMP to the complex-valued AMP (simply using circularlysymmetric Gaussian) [MWKL15b]
\checkmark Providing a unified view of AMP and VAMP (derived from scalar EP [MWKL15a] and vector EP [RSF16], respectively)
X. Meng, S. Wu, L. Kuang, and J. Lu, "An expectation propagation perspective on approximate message passing," IEEE Signal Processing Letters, vol. 22, no. 8, pp. 1194-1197, Aug. 2015.

II. Generalized Linear Models

Generalized Linear Models

\square Motivations

Unknown
Signals/parameters
linear mixing
probabilistic mapping
observations
$\mathbf{A} \in \mathbb{R}^{M \times N} \xrightarrow{\mathbf{z}=\mathbf{A x}}$
-

- GLM is more general: the measurements are often obtained in a nonlinear way
\checkmark Difficult to perform inference due to the nonlinearity (non-Gaussian likelihood)
- SLM inference algorithms have already been extensively studied
\checkmark Simple to design and analyze
\checkmark Various algorithms, e.g., AMP and sparse Bayesian learning (SBL) have already been proposed

Generalized Linear Models

- Motivations

Unknown
Signals/parameters
linear mixing
probabilistic mapping
observations
$\mathbf{A} \in \mathbb{R}^{M \times N} \quad \xrightarrow{\mathbf{Z}=\mathbf{A X}}$
$\mathbf{A} \in \mathbb{R}^{M \times N} \xrightarrow{\mathbf{Z}}$

- GLM is more general: the measurements are often obtained in a nonlinear way
\checkmark Difficult to perform inference due to the nonlinearity (non-Gaussian likelihood)
- SLM inference algorithms have already been extensively studied
\checkmark Simple to design and analyze
\checkmark Various algorithms, e.g., AMP and sparse Bayesian learning (SBL) have already been proposed

Is it possible to perform the GLM inference using the existing SLM inference algorithms?

SLM Inference Algorithms

Easily extended?

GLM Inference Algorithms

A Unified Inference Framework for GLM

- Two Equivalent Factor Graphs of GLM

(a) factor graph of GLM
(b) Equivalent factor graph of GLM

A Unified Inference Framework for GLM

- Two Equivalent Factor Graphs of GLM

(a) factor graph of GLM
(b) Equivalent factor graph of GLM

- Decoupling GLM into SLM via EP

$$
\begin{gathered}
p_{0}(\mathbf{x}) \quad \mathbf{x} \delta(\mathbf{z}-\mathbf{A x}) \quad \mathbf{z} \xrightarrow[\substack{ \\
m_{p \rightarrow z}(\mathbf{z})}]{\stackrel{m_{z \rightarrow p}(\mathbf{z})}{ } p(\mathbf{y} \mid \mathbf{z})} \\
m_{z \rightarrow p}^{t-1}(\mathbf{z}) \propto \mathcal{N}\left(\mathbf{z} ; \mathrm{z}_{A}^{\text {ext }}(t-1), v_{A}^{\text {ext }}(t-1) I\right) \\
m_{p \rightarrow z}^{t}(\mathbf{z}) \propto \frac{\operatorname{Proj}_{\Phi}\left(p(\mathbf{y} \mid \mathbf{z}) m_{z \rightarrow p}^{t-1}(\mathbf{z})\right)}{m_{z \rightarrow p}^{t-1}(\mathbf{z})} \propto \mathcal{N}(t \text {-th iteration })
\end{gathered}
$$

A Unified Inference Framework for GLM

- Two Equivalent Factor Graphs of GLM

(a) factor graph of GLM
(b) Equivalent factor graph of GLM

- Decoupling GLM into SLM via EP

$$
\begin{aligned}
& m_{z \rightarrow p}^{t-1}(\mathbf{z}) \propto \mathcal{N}\left(\mathbf{z} ; z_{A}^{\text {ext }}(t-1), v_{A}^{\text {ext }}(t-1) I\right) \quad \begin{array}{c}
\text { EP message passing } \\
\text { (t-th iteration) }
\end{array} \\
& m_{p \rightarrow z}^{t}(\mathbf{z}) \propto \frac{\operatorname{Proj}_{\Phi}\left(p(\mathbf{y} \mid \mathbf{z}) m_{z \rightarrow p}^{t-1}(\mathbf{z})\right)}{m_{z \rightarrow p}^{t-1}(\mathbf{z})} \propto \mathcal{N}\left(\mathbf{z} ; z_{B}^{\text {ext }}(t), \nu_{B}^{\text {ext }}(t) I\right)
\end{aligned}
$$

A Unified Inference Framework for GLM

- Decoupling GLM into SLM via EP

Pseudo SLM

MMSE module B

A Unified Inference Framework for GLM

- Decoupling GLM into SLM via EP

Pseudo SLM

MMSE module B

- The original GLM is iteratively decoupled into a sequence of simple SLM problems

Note: The computation of posterior mean and variance of z in module A may differ for different SLM inference methods.

A Unified Inference Framework for GLM

- Decoupling GLM into SLM via EP

Pseudo SLM

MMSE module B

- The original GLM is iteratively decoupled into a sequence of simple SLM problems

X. Meng, S. Wu and J. Zhu, "A unified Bayesian inference framework for generalized linear model," IEEE Signal Processing Letters, vol. 25, no. 3, Mar. 2018.

Note: The computation of posterior mean and variance of z in module A may differ for different SLM inference methods.

Universal Algorithm Design
Unified Inference Framework for GLM

- Initialization $\mathbf{z}_{A}^{\text {ext }}(0), v_{A}^{\text {ext }}(0)$
- For $\mathrm{t}=1$: T, Do

1. Perform component-wise MMSE
2. Update $\mathbf{z}_{B}^{\text {ext }}(t), v_{B}^{\text {ext }}(t)$
3. Perform SLM inference one or more iterations
4. Compute $\mathbf{z}_{A}^{\text {post }}(t), v_{A}^{\text {post }}(t)$ and then update $\mathbf{z}_{A}^{\text {ext }}(t), v_{A}^{\text {ext }}(t)$

A Unified Inference Framework for GLM

\square From AMP to Gr-AMP

The Gr-AMP Algorithm

- Initialization $\mathbf{z}_{A}^{\text {ext }}(0), v_{A}^{\text {ext }}(0)$
- For t = 1: T, Do

1. Perform component-wise MMSE
2. Update $\mathbf{z}_{B}^{\text {ext }}(t), v_{B}^{\text {ext }}(t)$
3. Perform AMP for T0 iterations
4. Compute $\mathbf{z}_{A}^{\text {post }}(t), v_{A}^{\text {post }}(t)$ and then update $\mathbf{z}_{A}^{\text {ext }}(t), v_{A}^{\text {ext }}(t)$

A Unified Inference Framework for GLM

\square From AMP to Gr-AMP

| AMP |
| :---: | :---: |
| (T0 iterations) |
| Module A |

The Gr-AMP Algorithm

- Initialization $\mathbf{z}_{A}^{\text {ext }}(0), v_{A}^{\text {ext }}(0)$
- For t = 1: T, Do

1. Perform component-wise MMSE
2. Update $\mathbf{z}_{B}^{\text {ext }}(t), v_{B}^{\text {ext }}(t)$
3. Perform AMP for TO iterations
4. Compute $\mathbf{z}_{A}^{\text {post }}(t), v_{A}^{\text {post }}(t)$ and then update $\mathbf{z}_{A}^{\text {ext }}(t), v_{A}^{\text {ext }}(t)$

- Relation of Gr-AMP to GAMP

\checkmark Gr-AMP is precisely equivalent to GAMP when T0 $=1$ and thus provides an insightful perspective on GAMP: In effect, GAMP performs one iteration of AMP each time after transforming the GLM problem to a pseudo SLM problem.
\checkmark A more flexible message passing schedule: double-loop implementation

- Quantized CS for 1,2,3-bit cases:
$N=1024, M=512, S N R=50 \mathrm{~dB}$
- Gr-AMP and GAMP converge to the same performance for i.i.d. Gaussian A
- Total number iterations of AMP are about the same while the number of MMSE operations is reduced for Gr-AMP.
X. Meng, S. Wu and J. Zhu, "A unified Bayesian inference framework for generalized linear model," IEEE Signal Processing Letters., vol. 25, no. 3, Mar. 2018.

A Unified Inference Framework for GLM

- From VAMP/SBL to Gr-AMP/Gr-SBL

VAMP $/ S B L$ (T0 iterations) Module A	$\mathbf{z}_{A}^{\text {ext }}(t-1), v_{A}^{\text {ext }}(t-1)$		
	$\mathbf{z}_{B}^{\text {ext }}(t), v_{B}^{\text {ext }}(t)$		Component-wise
:---:			
MMSE			
Module B			

The Gr-VAMP/Gr-SBL Algorithm

- Initialization $\mathbf{z}_{A}^{\text {ext }}(0), v_{A}^{\text {ext }}(0)$
- For $\mathrm{t}=1$: T, Do

1. Perform component-wise MMSE
2. Update $\mathbf{z}_{B}^{\text {ext }}(t), v_{B}^{\text {ext }}(t)$
3. Perform VAMP/SBL for T0 iterations
4. Compute $\mathbf{z}_{A}^{\text {post }}(t), v_{A}^{\text {post }}(t)$ and then update $\mathbf{z}_{A}^{\text {ext }}(t), v_{A}^{\text {ext }}(t)$

A Unified Inference Framework for GLM

- From VAMP/SBL to Gr-AMP/Gr-SBL

VAMP/SBL (T0 iterations) Module \mathbf{A}	$\mathbf{z}_{B}^{\text {ext }}(t), \nu_{B}^{\text {ext }}(t)$
	ext$\|$Component-wise MMSE Module B

The Gr-VAMP/Gr-SBL Algorithm

- Initialization $\mathbf{z}_{A}^{\text {ext }}(0), v_{A}^{\text {ext }}(0)$
- For t = 1: T, Do

1. Perform component-wise MMSE
2. Update $\mathbf{z}_{B}^{\text {ext }}(t), v_{B}^{\text {ext }}(t)$
3. Perform VAMP/SBL for T0 iterations
4. Compute $\mathbf{z}_{A}^{\text {post }}(t), v_{A}^{\text {post }}(t)$ and then update $\mathbf{z}_{A}^{\text {ext }}(t), v_{A}^{\text {ext }}(t)$

(a) Number of Iterations $(\kappa(A)=1)$

(b) Number of Iterations $(\kappa(A)=100)$

Performance of de-biased NMSE for 1-bit CS $\checkmark N=512, M=2048, S N R=50 \mathrm{~dB}$, sparse ratio 0.1
\checkmark T0 $=1$ for both Gr-VAMP and Gr-SBL \checkmark When conditional number is 1 , all kinds of algorithms performs nearly the same. \checkmark As the condition number increases, the recovery performances degrade smoothly for Gr-VAMP/GVAMP/Gr-SBL while both Gr-AMP and GAMP diverge for even mild condition number, which show the robustness of Gr-VAMP/Gr-SBL/GVAMP for general matrices.

[^0] Letters., vol. 25, no. 3, Mar. 2018.

III. Extension of GLM to Bilinear Models

Extension of GLM to Bilinear Models

- Bilinear GLM Problems

- Assumptions
$\mathrm{A}(\cdot)$ is a known affine linear function of unknown vector $\theta_{A}=\mathbf{b}$,i.e.,
- Goal

$$
\mathbf{A}(\mathbf{b})=\mathbf{A}_{0}+\sum_{q=1}^{Q} b_{q} \mathbf{A}_{q} \quad \Theta \triangleq\left\{\boldsymbol{\theta}_{X}, \boldsymbol{\theta}_{A}, \boldsymbol{\theta}_{Y}\right\}
$$

To jointly infer X and A, given Y with unknown parameters Θ

$$
\begin{aligned}
& \hat{\boldsymbol{\Theta}}_{\mathrm{ML}}=\underset{\boldsymbol{\Theta}}{\operatorname{argmax}} p_{\mathbf{Y}}(\mathbf{Y} ; \boldsymbol{\Theta}), \\
& \hat{\mathbf{X}}_{\mathrm{MMSE}}=\mathrm{E}\left[\mathbf{X} \mid \mathbf{Y} ; \hat{\boldsymbol{\Theta}}_{\mathrm{ML}}\right],
\end{aligned}
$$

Extension of GLM to Bilinear Models

- Bilinear GLM Problems

- Assumptions
$\mathrm{A}(\cdot)$ is a known affine linear function of unknown vector $\theta_{A}=\mathbf{b}$,i.e.,
- Goal

$$
\mathbf{A}(\mathbf{b})=\mathbf{A}_{0}+\sum_{q=1}^{Q} b_{q} \mathbf{A}_{q} \quad \Theta \triangleq\left\{\boldsymbol{\theta}_{X}, \boldsymbol{\theta}_{A}, \boldsymbol{\theta}_{Y}\right\}
$$

To jointly infer X and A, given Y with unknown parameters Θ

$$
\begin{aligned}
& \hat{\boldsymbol{\Theta}}_{\mathrm{ML}}=\underset{\Theta}{\operatorname{argmax}} p_{\mathbf{Y}}(\mathbf{Y} ; \boldsymbol{\Theta}), \\
& \hat{\mathbf{X}}_{\mathrm{MMSE}}=\mathrm{E}\left[\mathbf{X} \mid \mathbf{Y} ; \hat{\boldsymbol{\Theta}}_{\mathrm{ML}}\right],
\end{aligned}
$$

Intractable!

Basic Idea:

\checkmark First considering the simple case when the likelihood $p\left(\mathbf{Y} \mid \mathbf{Z} ; \theta_{Y}\right)$ is Gaussian, i.e.,

$$
\mathbf{Y}=\mathbf{A}\left(\theta_{A}\right) \mathbf{X}+\mathbf{N}
$$

\checkmark Extending to generalized nonlinear observations using the proposed unified framework for GLM

Extension of GLM to Bilinear Models

\square Standard Bilinear Problems

$$
\begin{gathered}
\mathbf{Y}=\mathbf{A}\left(\boldsymbol{\theta}_{A}\right) \mathbf{X}+\mathbf{N} \quad \mathbf{\Theta} \triangleq\left\{\boldsymbol{\theta}_{X}, \boldsymbol{\theta}_{A}, \boldsymbol{\theta}_{Y}\right\} \\
\mathbf{X} \sim p\left(\mathbf{X} ; \boldsymbol{\theta}_{X}\right)=\prod_{i, j} p\left(x_{i j} ; \boldsymbol{\theta}_{X}\right)=\prod_{l=1}^{L} p\left(\mathbf{x}_{l} ; \boldsymbol{\theta}_{X}\right) \quad \mathbf{Y} \sim p\left(\mathbf{Y} \mid \mathbf{A}\left(\theta_{A}\right) \mathbf{X} ; \boldsymbol{\theta}_{Y}\right)=\prod_{l=1}^{L} \mathcal{N}\left(\mathbf{y}_{l} ; \mathbf{A}\left(\theta_{A}\right) \mathbf{x}_{l}, \gamma_{w}^{-1} \mathbf{I}\right)
\end{gathered}
$$

EM learning framework
E-step:

$$
Q\left(\Theta, \Theta^{t}\right)=\mathrm{E}_{p\left(\mathbf{X} \mathbf{Y} ; \Theta^{t}\right)}\left[\log p\left(\mathbf{X}, \mathbf{Y} ; \Theta^{t}\right)\right]
$$

Iterating

M-step:

$$
\Theta^{t+1}=\underset{\Theta}{\arg \max } Q\left(\Theta, \Theta^{t}\right)
$$

Extension of GLM to Bilinear Models

\square Standard Bilinear Problems

$$
\begin{gathered}
\mathbf{Y}=\mathbf{A}\left(\boldsymbol{\theta}_{A}\right) \mathbf{X}+\mathbf{N} \quad \mathbf{\Theta} \triangleq\left\{\boldsymbol{\theta}_{X}, \boldsymbol{\theta}_{A}, \boldsymbol{\theta}_{Y}\right\} \\
\mathbf{X} \sim p\left(\mathbf{X} ; \boldsymbol{\theta}_{X}\right)=\prod_{i, j} p\left(x_{i j} ; \boldsymbol{\theta}_{X}\right)=\prod_{l=1}^{L} p\left(\mathbf{x}_{l} ; \boldsymbol{\theta}_{X}\right) \quad \mathbf{Y} \sim p\left(\mathbf{Y} \mid \mathbf{A}\left(\theta_{A}\right) \mathbf{X} ; \boldsymbol{\theta}_{Y}\right)=\prod_{l=1}^{L} \mathcal{N}\left(\mathbf{y}_{l} ; \mathbf{A}\left(\theta_{A}\right) \mathbf{x}_{l}, \gamma_{w}^{-1} \mathbf{I}\right)
\end{gathered}
$$

EM learning framework
E-step:

$$
Q\left(\Theta, \Theta^{t}\right)=\mathrm{E}_{p\left(\mathbf{X Y} \mathbf{Y} ; \Theta^{t}\right)}\left[\log p\left(\mathbf{X}, \mathbf{Y} ; \Theta^{t}\right)\right]
$$

Iterating
M-step:

$$
\Theta^{t+1}=\underset{\Theta}{\arg \max } Q\left(\Theta, \Theta^{t}\right)
$$

E-Step Too Complicated!
 $p\left(\mathbf{X} \mid \mathbf{Y} ; \Theta^{t}\right)$

Extension of GLM to Bilinear Models

- Standard Bilinear Problems

$$
\begin{gathered}
\mathbf{Y}=\mathbf{A}\left(\boldsymbol{\theta}_{A}\right) \mathbf{X}+\mathbf{N} \\
\mathbf{X} \sim p\left(\mathbf{X} ; \boldsymbol{\theta}_{X}\right)=\prod_{i, j} p\left(x_{i j} ; \boldsymbol{\theta}_{X}\right)=\prod_{l=1}^{L} p\left(\mathbf{x}_{l} ; \boldsymbol{\theta}_{X}\right) \quad \mathbf{Y} \sim p\left(\mathbf{Y} \mid \mathbf{A}\left(\theta_{A}\right) \mathbf{X} ; \boldsymbol{\theta}_{A}, \boldsymbol{\theta}_{Y}\right\}=\prod_{l=1}^{L} \mathcal{N}\left(\mathbf{y}_{l} ; \mathbf{A}\left(\theta_{A}\right) \mathbf{x}_{l}, \gamma_{w}^{-1} \mathbf{I}\right)
\end{gathered}
$$

EM learning framework

E-step:

$$
Q\left(\Theta, \Theta^{t}\right)=\mathrm{E}_{p\left(\mathbf{X Y} ; \boldsymbol{\theta}^{\prime}\right)}\left[\log p\left(\mathbf{X}, \mathbf{Y} ; \Theta^{t}\right)\right]
$$

Iterating
M-step:

$$
\Theta^{t+1}=\underset{\Theta}{\arg \max } Q\left(\Theta, \Theta^{t}\right)
$$

$$
\begin{gathered}
\text { E-Step Too } \\
\text { Complicated! } \\
p\left(\mathbf{X} \mid \mathbf{Y} ; \Theta^{t}\right)
\end{gathered}
$$

- Solution
\checkmark The posterior distribution $p\left(\mathrm{X} \mid \mathbf{Y} ; \Theta^{t}\right)$ can be approximated by message passing algorithms, e.g., AMP, and VAMP. In each iteration of EM

$$
p\left(\mathbf{X} \mid \mathbf{Y} ; \Theta^{t}\right)^{\text {Replaced by }} q\left(\mathbf{X} \mid \mathbf{Y} ; \Theta^{t}\right) \underset{\text { passing result }}{\text { message }}
$$

Extension of GLM to Bilinear Models

- Bilinear Adaptive VAMP

$$
\begin{array}{rl}
p_{0}\left(\mathbf{X} ; \theta_{X}\right) & p(\mathbf{Y} \mid \mathbf{A}(\theta) \\
f_{0} & \mathbf{X} \\
f_{Y}
\end{array}
$$

Gaussian likelihood
$p\left(\mathbf{Y} \mid \mathbf{A}\left(\theta_{A}\right) \mathbf{X} ; \theta_{Y}\right)$

Extension of GLM to Bilinear Models

\square Bilinear Adaptive VAMP

$$
p_{0}\left(\mathbf{X} ; \theta_{X}\right)
$$

Gaussian likelihood
$p\left(\mathbf{Y} \mid \mathbf{A}\left(\theta_{A}\right) \mathbf{X} ; \theta_{\mathrm{Y}}\right)$

$m_{x \rightarrow f_{Y}}^{t-1}(\mathbf{X}) \quad$ message in the last $(\mathbf{t}-1)$ iteration

Extension of GLM to Bilinear Models

- Bilinear Adaptive VAMP

$p_{0}\left(\mathbf{X} ; \theta_{X}\right)$
Gaussian likelihood
$p\left(\mathbf{Y} \mid \mathbf{A}\left(\theta_{A}\right) \mathbf{X} ; \theta_{Y}\right)$

$m_{x \rightarrow f_{Y}}^{t-1}(\mathbf{X}) \quad$ message in the last ($\mathbf{t}-1$) iteration

$q_{1}\left(X \mid Y ; \Theta^{t}\right) \quad$ Update the posterior distribution

Extension of GLM to Bilinear Models

- Bilinear Adaptive VAMP

$p_{0}\left(\mathbf{X} ; \theta_{X}\right)$
Gaussian likelihood
$p\left(\mathbf{Y} \mid \mathbf{A}\left(\theta_{A}\right) \mathbf{X} ; \theta_{Y}\right)$

Extension of GLM to Bilinear Models

- Bilinear Adaptive VAMP

$$
p_{0}\left(\mathbf{X} ; \theta_{X}\right) \quad m_{f_{0} \rightarrow x}^{t}(\mathbf{X})
$$

Gaussian likelihood
$p\left(\mathbf{Y} \mid \mathbf{A}\left(\theta_{A}\right) \mathbf{X} ; \theta_{Y}\right)$

$$
m_{x \rightarrow f_{Y}}^{t-1}(\mathbf{X})
$$

message in the last $(\mathrm{t}-1)$ iteration

EM learning of θ_{X}
M-step: $\theta_{X}^{\text {new }}=\underset{\theta_{x}}{\arg \max } \mathrm{E}_{q_{i}\left(X X ; \boldsymbol{\theta}^{\prime}\right)}\left[\log p_{0}\left(\mathbf{X} ; \theta_{X}\right)\right]$

Iterating

E-step:
update $q_{1}\left(X \mid Y ; \Theta^{t}\right)$

Extension of GLM to Bilinear Models

- Bilinear Adaptive VAMP

$m_{x \rightarrow f_{r}}^{t-1}(\mathbf{X})$
message in the last ($\mathrm{t}-1$) iteration

$q_{1}\left(X \mid Y ; \Theta^{t}\right) \quad$ Update the posterior distribution

EM learning of θ_{X}
M-step: $\theta_{X}^{\text {new }}=\underset{\theta_{X}}{\arg \max } \mathrm{E}_{q_{1}\left(X \mid Y ; \theta^{t}\right)}\left[\log p_{0}\left(\mathbf{X} ; \theta_{X}\right)\right]$

Iterating

E-step:
update $q_{1}\left(X \mid Y ; \Theta^{t}\right)$
$m_{x \rightarrow f_{a}}^{t}(\mathbf{X}) \quad$ update message from variable to f_{Y}

Extension of GLM to Bilinear Models

- Bilinear Adaptive VAMP

$m_{x \rightarrow f_{Y}}^{t-1}(\mathbf{X}) \quad$ message in the last ($\mathbf{t}-1$) iteration

$q_{1}\left(X \mid Y ; \Theta^{t}\right) \quad$ Update the posterior distribution

EM learning of θ_{X}
M-step: $\theta_{X}^{\text {new }}=\underset{\theta_{X}}{\arg \max } \mathrm{E}_{q_{1}\left(X \mid Y ; \theta^{t}\right)}\left[\log p_{0}\left(\mathbf{X} ; \theta_{X}\right)\right]$

Iterating

update $q_{1}\left(X \mid Y ; \Theta^{t}\right)$
$m_{x \rightarrow f_{a}}^{t}(\mathbf{X}) \quad$ update message from variable to f_{Y}

$q_{2}\left(X \mid Y ; \Theta^{t}\right) \quad$ Update the posterior distribution

Extension of GLM to Bilinear Models

- Bilinear Adaptive VAMP

Gaussian likelihood

$$
\begin{aligned}
& p_{0}\left(\mathbf{X} ; \theta_{X}\right) \quad m_{f_{0} \rightarrow x}^{t}(\mathbf{X}) \quad m_{x \rightarrow f_{a}}^{t}(\mathbf{X}) \\
& p\left(\mathbf{Y} \mid \mathbf{A}\left(\theta_{A}\right) \mathbf{X} ; \theta_{Y}\right) \\
& f_{0} \xrightarrow{\rightleftarrows} \xrightarrow{<-=-}
\end{aligned}
$$

Extension of GLM to Bilinear Models

- Bilinear Adaptive VAMP

$$
\begin{aligned}
& p_{0}\left(\mathbf{X} ; \theta_{X}\right) \quad m_{f_{0} \rightarrow x}^{t}(\mathbf{X}) \quad m_{x \rightarrow f_{a}}^{t}(\mathbf{X}) \quad p\left(\mathbf{Y} \mid \mathbf{A}\left(\theta_{A}\right) \mathbf{X} ; \theta_{Y}\right) \\
& f_{0} \longrightarrow X \\
& m_{x \rightarrow f_{Y}}^{t-1}(\mathbf{X}) \\
& m_{f_{x} \rightarrow x}^{t}(\mathbf{X})
\end{aligned}
$$

Extension of GLM to Bilinear Models

- Bilinear Adaptive VAMP

$$
p_{0}\left(\mathbf{X} ; \theta_{X}\right) \quad m_{f_{0} \rightarrow x}^{t}(\mathbf{X}) \quad m_{x \rightarrow f_{a}}^{t}(\mathbf{X}) \quad p\left(\mathbf{Y} \mid \mathbf{A}\left(\theta_{A}\right) \mathbf{X} ; \theta_{Y}\right)
$$

Gaussian likelihood

X

Extension of GLM to Bilinear Models

\square From Linear to Nonlinear observations

Extension of GLM to Bilinear Models

\square From Linear to Nonlinear observations

Non-Gaussian likelihood!

- Similar to GLM, using EP, it can be iteratively decoupled into two modules

X. Meng, and J. Zhu, "Bilinear Adaptive Generalized Vector Approximate Message Passing," IEEE Access, 2019

Extension of GLM to Bilinear Models

- Experimental results of BAd-GVAMP

- Experiment 1: Quantized Compressed Sensing with matrix uncertaintv

$$
\mathbf{y}=Q(\mathbf{A}(\mathbf{b}) \mathbf{c}+\mathbf{w}) \quad \mathbf{A}(\mathbf{b})=\mathbf{A}_{0}+\sum_{i=1}^{G} b_{i} \mathbf{A}_{i}
$$

$\left\{\mathbf{A}_{i}\right\}_{i=0}^{G} \in \mathbb{R}^{M \times N}$ are known, \mathbf{b} are the unknown uncertainty parameters.

$\mathrm{SNR} \triangleq 10 \log \frac{\mathrm{E}\|\mathbf{A c}\|^{2}}{\mathrm{E}\|\mathbf{w}\|^{2}}=40 \mathrm{~dB}$
$\checkmark \mathrm{c}$ is generated with uniformly random support with K nonzero elements from i.i.d $N(0,1)$, we set $N=256, G=10, K=10$
\checkmark For $M / N=1$, the NMSE in dB is shown in left figure:
-- Converges fast (20-30 iterations)
-- Same as the oracle performance.
X. Meng, and J. Zhu, "Bilinear Adaptive Generalized Vector Approximate Message Passing," IEEE Access, 2019

Extension of GLM to Bilinear Models

- Experimental results of BAd-GVAMP

- Experiment 1: Quantized Compressed Sensing with matrix uncertaintv

$$
\mathbf{y}=Q(\mathbf{A}(\mathbf{b}) \mathbf{c}+\mathbf{w}) \quad \mathbf{A}(\mathbf{b})=\mathbf{A}_{0}+\sum_{i=1}^{G} b_{i} \mathbf{A}_{i}
$$

$\left\{\mathbf{A}_{i}\right\}_{i=0}^{G} \in \mathbb{R}^{M \times N}$ are known, b are the unknown uncertainty parameters.

$\mathrm{SNR} \triangleq 10 \log \frac{\mathrm{E}\|\mathbf{A c}\|^{2}}{\mathrm{E}\|\mathbf{w}\|^{2}}=40 \mathrm{~dB}$
$\checkmark \mathrm{c}$ is generated with uniformly random support with K nonzero elements from i.i.d $N(0,1)$, we set $N=256, G=10, K=10$
\checkmark Then, the performance vs. ratio M / N is evaluated:
-- As the increase of M / N, the recovery performance improves
-- Approaching the oracle performance in a wide range of M / N values
X. Meng, and J. Zhu, "Bilinear Adaptive Generalized Vector Approximate Message Passing," IEEE Access, 2019

Extension of GLM to Bilinear Models

- Experimental results of BAd-GVAMP

- Experiment 2: Self-Calibration from quantized measurements

$$
\begin{gathered}
\mathbf{y}=Q(\operatorname{diag}(\mathbf{H b}) \Psi \mathbf{c}+\mathbf{w})=Q\left(\left[\sum_{i=1}^{G} b_{i} \operatorname{diag}\left(\mathbf{h}_{i}\right) \Psi\right] \mathbf{c}+\mathbf{w}\right) \\
\text { with known } \mathbf{H} \in \mathbb{R}^{M \times G} \text { and } \mathbf{\Psi} \in \mathbb{R}^{M \times N}
\end{gathered}
$$

Goal: to recover the K -sparse signal vector c and the calibration parameters b

$\checkmark \mathrm{K}=10, \mathrm{G}=8, \mathrm{M}=128$ and $\mathrm{SNR}=40 \mathrm{~dB}$.
$\checkmark \mathrm{H}$ is constructed using Q randomly selected columns of the Hadamard matrix, the elements of \boldsymbol{b} and Ψ are i.i.d. drawn from $N(0 ; 1)$, and c is generated with K nonzero elements i.i.d. drawn from $N(0 ; 1)$.

$$
\mathrm{NMSE}=10 \log \frac{\left\|\hat{\mathbf{b}} \hat{\mathbf{c}}^{\mathrm{T}}-\mathrm{bc}^{\mathrm{T}}\right\|_{\mathrm{F}}^{2}}{\left\|\mathbf{b c}^{\mathrm{T}}\right\|_{\mathrm{F}}^{2}}
$$

\checkmark As the sampling rate increases, the median NMSE decreases.
\checkmark Near oracle performance.
X. Meng, and J. Zhu, "Bilinear Adaptive Generalized Vector Approximate Message Passing," IEEE Access, 2019

Extension of GLM to Bilinear Models

\square Experimental results of BAd-GVAMP

- Experiment 3: Structured dictionary learning from quantized measurements

Goal: Finding a dictionary matrix A and sparse matrix X such that

$$
\begin{array}{r}
\mathbf{Y}=Q(\mathbf{A X}+\mathbf{N}) \quad \mathbf{A} \in \mathbb{R}^{M \times N}, \mathbf{X} \in \mathbb{R}^{N \times L} \\
Q(\bullet) \text { is a quantization function } \mathbf{A}=\sum_{i=1}^{c} b_{i} \mathbf{A}_{i}
\end{array}
$$

$\checkmark \mathrm{G}=\mathrm{M}=\mathrm{N}=64$ and $\mathrm{SNR}=40 \mathrm{~dB}$.

$$
\operatorname{NMSE}(\hat{\mathbf{A}}) \triangleq \min _{\lambda \in \mathbb{R}} \frac{\|\mathbf{A}-\lambda \hat{\mathbf{A}}\|_{\mathrm{F}}^{2}}{\|\mathbf{A}\|_{\mathrm{F}}^{2}}
$$

\checkmark As the training length L increases, the NMSE decreases and dictionary matrix A has been learned with high performance.
X. Meng, and J. Zhu, "Bilinear Adaptive Generalized Vector Approximate Message Passing," IEEE Access, 2019

Conclusions

- Considering approximate Bayesian inference methods for generalized linear models (GLM) using the message passing approach
- Deriving the approximate message passing (AMP) algorithm from expectation propagation
- Proposing a unified approximate inference framework for GLM
- Simplifying the extension of various SLM inference algorithms to GLM inference
- Providing new insights on some existing GLM inference algorithms
- Extending the GLM to bilinear matrix recovery problem and proposing one efficient message passing algorithm called BAd-VAMP

Aeferen ces

- [DMM09]Donoho, Maleki, Montanari. "Message-passing algorithms for compressed sensing." Proceedings of the National Academy of Sciences 106.45 (2009): 18914-18919.
- [DMM10] Donoho, Maleki, Montanari, "Message passing algorithms for compressed sensing: I. motivation and construction." Proc IEEE ITW, 20110
- [BM11] Bayati, Montanari. "The dynamics of message passing on dense graphs, with applications to compressed sensing." IEEE Transactions on Information Theory 57.2 (2011): 764-785.
- [Rangan10] Rangan, Sundeep. "Estimation with random linear mixing, belief propagation and compressed sensing." Information Sciences and Systems (CISS), 2010 44th Annual Conference on. IEEE, 2010.
- [Tanaka 02] Tanaka, Toshiyuki. "A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors." IEEE Transactions on Information theory 48.11 (2002): 2888-2910.
- [Minka01] Minka, Thomas P. "Expectation propagation for approximate Bayesian inference." 2001
- [OW05] Opper, Manfred, and Ole Winther. "Expectation consistent approximate inference." Journal of Machine Learning Research 6.Dec (2005): 2177-2204.
- [Rangan11] Rangan, "Generalized approximate message passing for estimation with random linear mixing." Proc IEEE ISIT 2011
- [RSF16] Rangan, Schniter, Fletcher, "Vector approximate message passing", 2016
- [SRF16] P. Schniter, S. Rangan, and A. K. Fletcher, "Vector approximate message passing for the generalized linear model," in Proc. 50th Asilomar Conf. Signals, Syst. Comput., Nov. 2016, pp. 1525-1529.
- [Kabashima 03] Kabashima Y. A , " CDMA multiuser detection algorithm on the basis of belief propagation", Journal of Physics A: Mathematical and General, 2003, 36(43)
- [KMSSZ12] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, "Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices," Journal of Statistical Mechanics: Theory and Experiment, vol. 2012, no. 08, p. P08009, 2012.
- [MWKL15a] X. Meng, S. Wu, L. Kuang, and J. Lu, "An expectation propagation perspective on approximate message passing," IEEE Signal Process. Lett., vol. 22, no. 8, pp. 1194-1197, Aug. 2015.
- [MWKL15b] X. Meng, S. Wu, L. Kuang, and J. Lu, " Concise derivation of complex Bayesian approximate message passing via expectation propagation," arXiv preprint arXiv:1509.08658, 2015.
- [WKNLHDQ14] S. Wu, L. Kuang, Z. Ni, J. Lu, D. Huang, and Q. Guo, "Low-complexity iterative detection for large-scale multiuser MIMO-OFDM systems using approximate message passing," IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 902-915, Oct. 2014.
- [MWZ18]X. Meng, S. Wu and J. Zhu, "A unified Bayesian inference framework for generalized linear model," IEEE Signal Process. Lett., vol. 25, no. 3, Mar. 2018.

References

- [MZ18] X. Meng, and J. Zhu, "Bilinear Adaptive Generalized Vector Approximate Message Passing," arXiv preprint arXiv:1810.08129, 2018
- [PSC14a] J. T. Parker, P. Schniter, and V. Cevher, "Bilinear generalized approximate message passing-Part I: Derivation," IEEE Trans. Signal Process., vol. 62, no. 22, pp. 5839-5853, Nov. 2014.
- [PSC14b] J. T. Parker, P. Schniter, and V. Cevher, "Bilinear generalized approximate message passing-Part II: Applications," IEEE Trans. Signal Process., vol. 62, no. 22, pp. 5854-5867, Nov. 2014.
- [PS16] J. T. Parker and P. Schniter, "Parametric bilinear generalized approximate message passing," IEEE J. Sel. Topics Signal Process., vol. 10, no. 4, pp. 795-808, 2016.
- [KKMSZ16] Y. Kabashima, F. Krzakala, M. M' ezard, A. Sakata and L. Zdeborov' a, "Phase transitions and sample complexity in bayesoptimal matrix factorization," IEEE Trans. Inf. Theory, vol. 62, no. 7, pp. 4228-4265, 2016.
- [SRF] P. Schniter, S. Rangan, and A. K. Fletcher, "Vector approximate message passing for the generalized linear model," in Proc. 50th Asilomar Conf. Signals, Syst. Comput., Nov. 2016, pp. 1525-1529.
- [ML17] J. Ma and L. Ping, "Orthogonal AMP," IEEE Access, vol. 5, pp. 2020-2033, 2017.
- [HWJ17] H. He, C. K. Wen, and S. Jin, "Generalized expectation consistent signal recovery for nonlinear measurements," in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2017, pp. 2333-2337.
- [QZW18] Zou Q, Zhang H, Wen C K, et al. , " Concise Derivation for Generalized Approximate Message Passing Using Expectation Propagation," IEEE Signal Processing Letters, 2018.
- [SFRS18] S. Sarkar, A. K. Fletcher, S. Rangan and P. Schniter, "Bilinear recovery using adaptive vector-AMP," avaliable at
- https://arxiv.org/pdf/1809.00024.pdf.
- [VS13] J. P. Vila and P. Schniter, "Expectation-maximization Gaussian-mixture approximate message passing," IEEE Trans. Signal Process., vol. 61, no. 19, pp. 4658-4672, Oct. 2013.
- [KMZ13] F. Krzakala, M. Mezard, and L. Zdeborova, "Compressed sensing under matrix uncertainty: Optimum thresholds and robust approximate message passing," ICASSP, 2013.

Thank You8

ありがとう

Q\＆A

[^0]: X. Meng, S. Wu and J. Zhu, "A unified Bayesian inference framework for generalized linear model," IEEE Signal Processing

