Approximate Bayesian Inference for Generalized Linear Models: A Message Passing Approach

Xiangming Meng

Huawei Technologies Co. Ltd., Shanghai, China

mengxm11@gmail.com

Feb. 27, 2019 RIKEN AIP, Tokyo

Outline

- Problem Statement
- Standard Linear Models (SLM)
 - Approximate message passing
- Generalized Linear Models (GLM)
 - A unified inference framework
- Extension of GLM to Bilinear Models
 - Bilinear adaptive vector AMP
- Conclusion

Generalized Linear Models (GLM)

• Goal

To infer the unknown signal/paremeters **X** from **y** and **A**

Applications

- ✓ Information theory: channel estimation, multi-user detection, etc.
- ✓ Machine learning: linear regression, logistic regression, classification, etc.
- ✓ Signal processing: compressed sensing, image processing, etc.
- ✓ Many others...

□ Standard Linear Models (SLM)

Special case of GLM:

When the likelihood is Gaussian, GLM reduces to SLM

□ Standard Linear Models (SLM)

Special case of GLM:

When the likelihood is Gaussian, GLM reduces to SLM

This is one fundamental model for linear inverse problem in science and engineering

Generalized Bilinear Models

Extended case of GLM:

The linear matrix A is also unknown or with uncertainty

• Goal

To jointly infer matrix X and A, given Y with unknown parameters θ_X, θ_Y

Generalized Bilinear Models

Extended case of GLM:

The linear matrix A is also unknown or with uncertainty

Generalized Bilinear Models

Extended case of GLM:

The linear matrix A is also unknown or with uncertainty

Applications

✓ Machine learning: Probabilistic PCA, linear factor model, matrix factorization, matrix completion, etc.

✓ Signal processing: compressed sensing with matrix uncertainty, dictionary learning, etc.

✓ Other matrix recovery problems...

Generalized Bilinear Models

Extended case of GLM:

The linear matrix A is also unknown or with uncertainty

Applications

✓ Machine learning: Probabilistic PCA, linear factor model, matrix factorization, matrix completion, etc.

✓ Signal processing: compressed sensing with matrix uncertainty, dictionary learning, etc.

✓ Other matrix recovery problems...

Bilinear recovery is much more difficult than original GLM since the linear mixing matrix is also unknown

"If you can't solve a problem, then there is an easier problem you can solve: find it." —George Pólya

I. Standard Linear Models

(George Pólya: 1887 –1985)

□ Classical Methods

• Least Squares Learning (LS) $\hat{\mathbf{x}} = \arg \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2$ • Regularized LS Learning

$$\mathbf{x} = \arg \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^{2} + \frac{\lambda}{2} \|\mathbf{x}\|_{2}^{2}$$
$$\mathbf{x} = \arg \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^{2} + \lambda \|\mathbf{x}\|_{1}^{2}$$

$$\hat{\mathbf{x}}_{LS} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{y}$$

$$\hat{\mathbf{x}}_{L2} = \left(\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I}\right)^{-1} \mathbf{A}^T \mathbf{y}$$

Iterative soft threshold algorithm (ISTA)

Classical Methods

• Least Squares Learning (LS) $\hat{\mathbf{x}} = \arg\min\frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2$

$$\hat{\mathbf{x}}_{LS} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{y}$$

Regularized LS Learning

$$\checkmark L2 \quad \hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2 + \frac{\lambda}{2} \|\mathbf{x}\|_2^2$$
$$\checkmark L1 \quad \hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2 + \lambda \|\mathbf{x}\|_1$$

$$\hat{\mathbf{x}}_{L2} = \left(\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I}\right)^{-1} \mathbf{A}^T \mathbf{y}$$

Iterative soft threshold algorithm (ISTA)

Limits

- Can not provide uncertainty estimates
- Poor performance with improper regularization
- High complexity even with closed-form solutions
- Slow convergence rate with stochastic or iterative methods

Classical Methods

• Least Squares Learning (LS) $\hat{\mathbf{x}} = \arg\min\frac{1}{2}\|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2$

$$\hat{\mathbf{x}}_{LS} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{y}$$

Regularized LS Learning

$$\checkmark L2 \quad \hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2 + \frac{\lambda}{2} \|\mathbf{x}\|_2^2$$
$$\checkmark L1 \quad \hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|^2 + \lambda \|\mathbf{x}\|_1$$

$$\hat{\mathbf{x}}_{L2} = \left(\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I}\right)^{-1} \mathbf{A}^T \mathbf{y}$$

Iterative soft threshold algorithm (ISTA)

Limits

- Can not provide uncertainty estimates
- Poor performance with improper regularization
- High complexity even with closed-form solutions
- Slow convergence rate with stochastic or iterative methods

D Exact Bayesian Inference

According to the Bayes' rule, the *posterior distribution* can be computed as

$$p(\mathbf{x} | \mathbf{y}) = \frac{p_0(\mathbf{x})p(\mathbf{y} | \mathbf{x})}{\int p_0(\mathbf{x})p(\mathbf{y} | \mathbf{x})d\mathbf{x}}$$

prior likelihood

D Exact Bayesian Inference

According to the Bayes' rule, the *posterior distribution* can be computed as

$$p(\mathbf{x} \mid \mathbf{y}) = \frac{p_0(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x})}{\int p_0(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x}) d\mathbf{x}} \xrightarrow{\text{marginalization}} p(x_i \mid \mathbf{y}) = \int_{\sim x_i} p(\mathbf{x} \mid \mathbf{y}) d\mathbf{x}_{\setminus i}$$
Posterior mean
$$\hat{x}_i^{MMSE} = \int x_i p(x_i \mid \mathbf{y}) dx_i$$
Minimum mean square
$$r_i^{MMSE} = \int x_i^2 p(x_i \mid \mathbf{y}) dx_i - (\hat{x}_i^{MMSE})^2$$

□ Exact Bayesian Inference

According to the Bayes' rule, the *posterior distribution* can be computed as

$$p(\mathbf{x} | \mathbf{y}) = \underbrace{p_0(\mathbf{x}) p(\mathbf{y} | \mathbf{x})}_{p_0(\mathbf{x}) p(\mathbf{y} | \mathbf{x}) d\mathbf{x}} \xrightarrow{\text{marginalization}} p(x_i | \mathbf{y}) \in \underbrace{p(\mathbf{x} | \mathbf{y}) d\mathbf{x}_{i}}_{x_i}$$
Posterior mean
$$\hat{x}_i^{MMSE} = \int x_i p(x_i | \mathbf{y}) dx_i$$
Minimum mean square
$$r_i^{MMSE} = \int x_i^2 p(x_i | \mathbf{y}) dx_i - (\hat{x}_i^{MMSE})^2$$

- No closed-form solutions
 There are no closed-form solutions for general problems
- Exact inference is intractable!
- Curse of Dimensionality: Intractable due to high-dimensional integration/summation

□ Exact Bayesian Inference

According to the Bayes' rule, the *posterior distribution* can be computed as

$$p(\mathbf{x} \mid \mathbf{y}) = \underbrace{p_0(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x})}_{p_0(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x}) d\mathbf{x}} \xrightarrow{\text{marginalization}} p(x_i \mid \mathbf{y}) \in \underbrace{p(\mathbf{x} \mid \mathbf{y}) d\mathbf{x}_{i}}_{x_i}$$
Posterior mean
$$\hat{x}_i^{MMSE} = \int x_i p(x_i \mid \mathbf{y}) dx_i$$
Minimum mean square
$$r_i^{MMSE} = \int x_i^2 p(x_i \mid \mathbf{y}) dx_i - (\hat{x}_i^{MMSE})^2$$

No closed-form solutions
 There are no closed-form solutions for general problems

✓ Curse of Dimensionality:

Intractable due to high-dimensional integration/summation

We have to resort to approximate inference methods

Graphical Models and Message Passing

"Graphical Models are a marriage between probability theory and graph theory." —Michael I. Jordan

Intuitively, graphical models expresses the probabilistic relationship, i.e., *conditional dependence* structure between random variables.

HMM (directed models)

□ Graphical Models and Message Passing

"Graphical Models are a marriage between probability theory and graph theory." —Michael I. Jordan

Intuitively, graphical models expresses the probabilistic relationship, i.e., *conditional dependence* structure between random variables.

HMM (directed models) Kalman filtering/Viterbi algorithm

Graphical Models not only provide a rich framework for representing highdimensional statistical models, and more importantly, fascinates the design of efficient inference algorithm (e.g., message passing) in a principled manner.

- Variational inference (VI) minimizes *KL(q//p)* while EP minimizes *KL(p//q)*
- EP is one kind of iterative fixed-point algorithm
- EP can be also implemented as message passing on factor graph

□ Expectation propagation [Minka01] [Opper05]

Factor Graph is one kind of bipartite graph which represents the factorization of a distribution where

- Circles represent random variables
- Squares represent compatibility functions
- One circle x connects one square f if and only if f is a function of x

$$p(\mathbf{x}) = f_1(x_1) f_2(x_1, x_2) f_3(x_2, x_3, x_4) \qquad f_1 \qquad f_2 \qquad f_2 \qquad f_3 \qquad x_4$$

 x_3

□ Expectation propagation [Minka01] [Opper05]

Factor Graph is one kind of bipartite graph which represents the factorization of a distribution where

- Circles represent random variables
- Squares represent compatibility functions
- One circle x connects one square f if and only if f is a function of x

$$p(\mathbf{x}) = f_1(x_1) f_2(x_1, x_2) f_3(x_2, x_3, x_4)$$

Local message passing for general factor graph

 X_3

□ Expectation propagation [Minka01] [Opper05]

Factor Graph is one kind of bipartite graph which represents the factorization of a distribution where

- Circles represent random variables
- Squares represent compatibility functions
- One circle x connects one square f if and only if f is a function of x

 $p(\mathbf{x}) = f_1(x_1) f_2(x_1, x_2) f_3(x_2, x_3, x_4)$

Local message passing for general factor graph X_3

□ Expectation propagation [Minka01] [Opper05]

Factor Graph is one kind of bipartite graph which represents the factorization of a distribution where

- Circles represent random variables
- Squares represent compatibility functions
- One circle x connects one square f if and only if f is a function of x

$$p(\mathbf{x}) = f_1(x_1) f_2(x_1, x_2) f_3(x_2, x_3, x_4)$$

Local message passing for general factor graph

 X_3

□ Expectation propagation [Minka01] [Opper05]

Factor Graph is one kind of bipartite graph which represents the factorization of a distribution where

- Circles represent random variables
- Squares represent compatibility functions
- One circle x connects one square f if and only if f is a function of x

$$p(\mathbf{x}) = f_1(x_1) f_2(x_1, x_2) f_3(x_2, x_3, x_4)$$

Local message passing for general factor graph

□ Expectation propagation [Minka01] [Opper05]

Factor Graph is one kind of bipartite graph which represents the factorization of a distribution where

- Circles represent random variables
- Squares represent compatibility functions
- One circle x connects one square f if and only if f is a function of x

$$p(\mathbf{x}) = f_1(x_1) f_2(x_1, x_2) f_3(x_2, x_3, x_4)$$

Local message passing for general factor graph

 x_3

□ Expectation propagation [Minka01] [Opper05]

Factor Graph is one kind of bipartite graph which represents the factorization of a distribution where

- Circles represent random variables
- Squares represent compatibility functions
- One circle x connects one square f if and only if f is a function of x

$$p(\mathbf{x}) = f_1(x_1) f_2(x_1, x_2) f_3(x_2, x_3, x_4)$$

Local message passing for general factor graph

After convergence or a maximum number of iterations, the marginal distribution is the product of all the incoming messages from neighboring factors

$$m_i(x_i) \propto \prod_{b \in N(i)} m_{b \to i}(x_i)$$

□ Factor Graph of the SLM

For the SLM, the *posterior distribution* can be factorized as follows

$$p(\mathbf{x} | \mathbf{y}) \propto \prod_{i=1}^{N} p_0(x_i) \prod_{a=1}^{M} \mathcal{N}(y_a; \mathbf{a}^T \mathbf{x}, \sigma^2)$$

□ Factor Graph of the SLM

For the SLM, the *posterior distribution* can be factorized as follows

□ Factor Graph of the SLM

For the SLM, the *posterior distribution* can be factorized as follows

The projection set Φ is chosen to be Gaussian distribution so that the messages become Gaussian distribution

$\begin{array}{c} \square \text{ An EP Perspective on AMP} \\ \hline m_{a \to i}^{t}(x_{i}) \propto \mathcal{N}(x_{i}; \hat{x}_{a \to i}^{t}, v_{a \to i}^{t}) \\ \hline m_{i \to a}^{t+1}(x_{i}) \propto \mathcal{N}(x_{i}; \hat{x}_{i \to a}^{t+1}, v_{i \to a}^{t+1}) \end{array} \text{ where } \end{array} \text{ where } \begin{array}{c} V_{a \to i}^{t} = \sum_{j \neq i} |A_{aj}|^{2} \nu_{j \to a}^{t} & Z_{a \to i}^{t} = \sum_{j \neq i} A_{aj} \hat{x}_{j \to a}^{t} \\ \widehat{x}_{a \to i}^{t} = \frac{y_{a} - Z_{a \to i}^{t}}{A_{ai}}, v_{a \to i}^{t} = \frac{\sigma^{2} + V_{a \to i}^{t}}{|A_{ai}|^{2}} \\ \Sigma_{i}^{t} = \left[\sum_{a} \frac{|A_{ai}|^{2}}{\sigma^{2} + V_{a \to i}^{t}}\right]^{-1} \quad R_{i}^{t} = \Sigma_{i}^{t} \sum_{a} \frac{A_{ai}^{*}(y_{a} - Z_{a \to i}^{t})}{\sigma^{2} + V_{a \to i}^{t}} \\ \widehat{x}_{i}^{t+1} = f_{a} \left(R_{i}^{t}, \Sigma_{i}^{t}\right) \quad \widehat{\nu}_{i}^{t+1} = f_{c} \left(R_{i}^{t}, \Sigma_{i}^{t}\right) \\ \frac{1}{\nu_{i \to a}^{t+1}} = \frac{1}{\nu_{i}^{t+1}} - \frac{|A_{ai}|^{2}}{\sigma^{2} + V_{a \to i}^{t}}, \\ \widehat{x}_{i \to a}^{t+1} = \nu_{i \to a}^{t+1} \left(\frac{\hat{x}_{i}^{t+1}}{\nu_{i}^{t+1}} - \frac{A_{ai}^{*}(y_{a} - Z_{a \to i}^{t})}{\sigma^{2} + V_{a \to i}^{t}}\right). \end{array}$

where

□ An EP Perspective on AMP

$$\begin{split} m_{a \to i}^{t}(x_{i}) &\propto \mathcal{N}(x_{i}; \hat{x}_{a \to i}^{t}, v_{a \to i}^{t}) \\ m_{i \to a}^{t+1}(x_{i}) &\propto \mathcal{N}(x_{i}; \hat{x}_{i \to a}^{t+1}, v_{i \to a}^{t+1}) \end{split}$$

• However, the number of messages are O(MN), which is still intractable for high-dimensional problems

$$\begin{split} V_{a \to i}^{t} &= \sum_{j \neq i} |A_{aj}|^{2} \nu_{j \to a}^{t} \quad Z_{a \to i}^{t} = \sum_{j \neq i} A_{aj} \hat{x}_{j \to a}^{t} \\ \hat{x}_{a \to i}^{t} &= \frac{y_{a} - Z_{a \to i}^{t}}{A_{ai}}, v_{a \to i}^{t} = \frac{\sigma^{2} + V_{a \to i}^{t}}{|A_{ai}|^{2}} \\ \Sigma_{i}^{t} &= \left[\sum_{a} \frac{|A_{ai}|^{2}}{\sigma^{2} + V_{a \to i}^{t}}\right]^{-1} \quad R_{i}^{t} = \Sigma_{i}^{t} \sum_{a} \frac{A_{ai}^{*}(y_{a} - Z_{a \to i}^{t})}{\sigma^{2} + V_{a \to i}^{t}} \\ \hat{x}_{i}^{t+1} &= f_{a} \left(R_{i}^{t}, \Sigma_{i}^{t}\right) \quad \hat{\nu}_{i}^{t+1} = f_{c} \left(R_{i}^{t}, \Sigma_{i}^{t}\right) \\ \frac{1}{\nu_{i \to a}^{t+1}} &= \frac{1}{\nu_{i}^{t+1}} - \frac{|A_{ai}|^{2}}{\sigma^{2} + V_{a \to i}^{t}}, \\ \hat{x}_{i \to a}^{t+1} &= \nu_{i \to a}^{t+1} \left(\frac{\hat{x}_{i}^{t+1}}{\nu_{i}^{t+1}} - \frac{A_{ai}^{*}(y)}{\sigma^{2}}\right) \quad \begin{array}{c} \text{Still Too} \\ \text{Complicated!} \\ \end{array}$$

□ An EP Perspective on AMP

 $m_{a \to i}^t(x_i) \propto \mathcal{N}(x_i; \hat{x}_{a \to i}^t, v_{a \to i}^t)$ $m_{i \to a}^{t+1}(x_i) \propto \mathcal{N}(x_i; \hat{x}_{i \to a}^{t+1}, v_{i \to a}^{t+1})$

where

- However, the number of messages are O(MN), which is still intractable for high-dimensional problems
- To reduce the number of messages, neglecting the high-order terms in large system limits

$$\begin{split} Z_a^t &= \sum_i A_{ai} \hat{x}_{i \to a}^t \quad V_a^t = \sum_i |A_{ai}|^2 \nu_{i \to a}^t \\ Z_{a \to i}^t &= Z_a^t - A_{ai} \hat{x}_{i \to a}^t, \qquad \textbf{Be careful!} \\ V_{a \to i}^t &= V_a^t - A_{ai}|^2 \nu_{i \to a}^t, \qquad V_{a \to i}^t \approx V_a^t \\ \nu_{i \to a}^{t+1} &\approx \nu_i^{t+1} \qquad \bigvee V_a^t \approx \sum_i |A_{ai}|^2 \nu_i^t, \end{split}$$

$$\begin{split} V_{a \to i}^{t} &= \sum_{j \neq i} |A_{aj}|^{2} \nu_{j \to a}^{t} \quad Z_{a \to i}^{t} = \sum_{j \neq i} A_{aj} \hat{x}_{j \to a}^{t} \\ \hat{x}_{a \to i}^{t} &= \frac{y_{a} - Z_{a \to i}^{t}}{A_{ai}}, v_{a \to i}^{t} = \frac{\sigma^{2} + V_{a \to i}^{t}}{|A_{ai}|^{2}} \\ \Sigma_{i}^{t} &= \left[\sum_{a} \frac{|A_{ai}|^{2}}{\sigma^{2} + V_{a \to i}^{t}}\right]^{-1} \quad R_{i}^{t} = \Sigma_{i}^{t} \sum_{a} \frac{A_{ai}^{*}(y_{a} - Z_{a \to i}^{t})}{\sigma^{2} + V_{a \to i}^{t}} \\ \hat{x}_{i}^{t+1} &= f_{a} \left(R_{i}^{t}, \Sigma_{i}^{t}\right) \quad \hat{\nu}_{i}^{t+1} = f_{c} \left(R_{i}^{t}, \Sigma_{i}^{t}\right) \\ \frac{1}{\nu_{i \to a}^{t+1}} &= \frac{1}{\nu_{i}^{t+1}} - \frac{|A_{ai}|^{2}}{\sigma^{2} + V_{a \to i}^{t}}, \\ \hat{x}_{i \to a}^{t+1} &= \nu_{i \to a}^{t+1} \left(\frac{\hat{x}_{i}^{t+1}}{\nu_{i}^{t+1}} - \frac{A_{ai}^{*}(y}{\sigma^{2}}\right) \\ \end{split}$$

 σ^2
□ An EP Perspective on AMP

$$\begin{split} m_{a \to i}^{t}(x_{i}) &\propto \mathcal{N}(x_{i}; \hat{x}_{a \to i}^{t}, v_{a \to i}^{t}) \\ m_{i \to a}^{t+1}(x_{i}) &\propto \mathcal{N}(x_{i}; \hat{x}_{i \to a}^{t+1}, v_{i \to a}^{t+1}) \end{split}$$

where

- However, the number of messages are *O(MN)*, which is still intractable for high-dimensional problems
- To reduce the number of messages, neglecting the high-order terms in large system limits

$$\begin{aligned} Z_a^t &= \sum_i A_{ai} \hat{x}_{i \to a}^t \quad V_a^t = \sum_i |A_{ai}|^2 \nu_{i \to a}^t \\ Z_{a \to i}^t &= Z_a^t - A_{ai} \hat{x}_{i \to a}^t, \qquad \textbf{Be careful!} \\ V_{a \to i}^t &= V_a^t - A_{ai}|^2 \nu_{i \to a}^t, \qquad V_{a \to i}^t \approx V_a^t \\ \nu_{i \to a}^{t+1} &\approx \nu_i^{t+1} \qquad \bigvee V_a^t \approx \sum_i |A_{ai}|^2 \nu_i^t. \end{aligned}$$

• After some algebra, we obtain the famous approximate message passing (AMP) algorithm.

X. Meng, S. Wu, L. Kuang, and J. Lu, "An expectation propagation perspective on approximate message passing," IEEE Signal Processing Letters, vol. 22, no. 8, pp. 1194-1197, Aug. 2015.

$$\begin{split} V_{a \to i}^{t} &= \sum_{j \neq i} |A_{aj}|^{2} \nu_{j \to a}^{t} \qquad Z_{a \to i}^{t} = \sum_{j \neq i} A_{aj} \hat{x}_{j \to a}^{t} \\ \hat{x}_{a \to i}^{t} &= \frac{y_{a} - Z_{a \to i}^{t}}{A_{ai}}, \nu_{a \to i}^{t} = \frac{\sigma^{2} + V_{a \to i}^{t}}{|A_{ai}|^{2}} \\ \Sigma_{i}^{t} &= \left[\sum_{a} \frac{|A_{ai}|^{2}}{\sigma^{2} + V_{a \to i}^{t}}\right]^{-1} \qquad R_{i}^{t} = \Sigma_{i}^{t} \sum_{a} \frac{A_{ai}^{*}(y_{a} - Z_{a \to i}^{t})}{\sigma^{2} + V_{a \to i}^{t}} \\ \hat{x}_{i}^{t+1} &= f_{a}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \qquad \hat{\nu}_{i}^{t+1} = f_{c}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \\ \frac{1}{\nu_{i \to a}^{t+1}} &= \frac{1}{\nu_{i}^{t+1}} - \frac{|A_{ai}|^{2}}{\sigma^{2} + V_{a \to i}^{t}}, \\ \hat{x}_{i \to a}^{t+1} &= \nu_{i \to a}^{t+1}\left(\frac{\hat{x}_{i}^{t+1}}{\nu_{i}^{t+1}} - \frac{A_{ai}^{*}(y)}{\sigma^{2}}\right) \qquad \text{Still Too} \\ \text{Complicated!} \\ \\ \textbf{X}_{i \to a}^{t+1} &= \nu_{i \to a}^{t+1}\left(\frac{\hat{x}_{i}^{t+1}}{\nu_{i}^{t+1}} - \frac{A_{ai}^{*}(y)}{\sigma^{2}}\right) \qquad \textbf{X}_{a}^{t+1} = \sum_{i \to a}^{t} \frac{(y_{a} - Z_{a}^{t-1})}{(y_{a}^{2} + V_{a}^{t-1})} \\ \text{Variable} \\ \textbf{Variable} \\ \textbf{Variable} \\ \textbf{Variable} \\ \textbf{Variable} \\ \textbf{Variable} \\ \textbf{X}_{i}^{t+1} &= E\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right), \hat{\nu}_{i}^{t+1} &= Var\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right) \\ \textbf{X}_{i}^{t+1} &= E\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right), \hat{\nu}_{i}^{t+1} &= Var\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right) \\ \textbf{X}_{i}^{t+1} &= E\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right), \hat{\nu}_{i}^{t+1} &= Var\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right) \\ \textbf{X}_{i}^{t+1} &= E\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right), \hat{\nu}_{i}^{t+1} &= Var\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right) \\ \textbf{X}_{i}^{t+1} &= E\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right), \hat{\nu}_{i}^{t+1} &= Var\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right) \\ \textbf{X}_{i}^{t+1} &= E\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right), \hat{\nu}_{i}^{t+1} &= Var\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right) \\ \textbf{X}_{i}^{t+1} &= E\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right), \hat{\nu}_{i}^{t+1} &= Var\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right) \\ \textbf{X}_{i}^{t+1} &= E\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right), \hat{\nu}_{i}^{t+1} &= Var\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right) \\ \textbf{X}_{i}^{t+1} &= E\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right), \hat{\nu}_{i}^{t+1} &= Var\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right) \\ \textbf{X}_{i}^{t+1} &= E\left(x_{i} \mid R_{i}^{t}, \Sigma_{i}^{t}\right), \hat{\nu}_{i}^{t+1} &= Var\left(x_{i} \mid R_{i}^{t}$$

□ An EP Perspective on AMP

AMP iteratively decouples the original vector inference problem to scalar inference problems

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$$

 $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$

 \vdots

 $R_1 = x_1 + \tilde{n}_1$

 \vdots

 $R_N = x_N + \tilde{n}_N$

decoupling principle

□ An EP Perspective on AMP

AMP iteratively decouples the original vector inference problem to scalar inference problems

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$$
 decoupled
 \vdots decoupling principle
 $R_1 = x_1 + \tilde{n}_1$
 \vdots decoupling principle
 $R_N = x_N + \tilde{n}_N$

• Notes of AMP

 ✓ For i.i.d. Gaussian A, AMP is proved to be asymptotically Bayesian optimal and rigorously analyzed via state evolution (SE) [BM11]

✓ For general matrices **A**, AMP may diverge [BM11]

✓ Vector AMP (VAMP) converges for right-rotationally

invariant matrices [RSF16]

□ An EP Perspective on AMP

AMP iteratively decouples the original vector inference problem to scalar inference problems

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$$
 decoupled
 \vdots decoupling principle
 $R_1 = x_1 + \tilde{n}_1$
 \vdots decoupling principle
 $R_N = x_N + \tilde{n}_N$

• Notes of AMP

 ✓ For i.i.d. Gaussian A, AMP is proved to be asymptotically Bayesian optimal and rigorously analyzed via state evolution (SE) [BM11]

✓ For general matrices **A**, AMP may diverge [BM11]

✓ Vector AMP (VAMP) converges for right-rotationally

invariant matrices [RSF16]

• The EP perspective of AMP:

- Explicitly establishing the relationship between AMP and EP for the first time
- ✓ Simplifying the extension of AMP to the complex-valued AMP (simply using circularlysymmetric Gaussian) [MWKL15b]

✓ Providing a unified view of AMP and VAMP (derived from scalar EP [MWKL15a] and vector EP [RSF16], respectively)

X. Meng, S. Wu, L. Kuang, and J. Lu, "An expectation propagation perspective on approximate message passing," IEEE Signal Processing Letters, vol. 22, no. 8, pp. 1194-1197, Aug. 2015.

□ An EP Perspective on AMP

AMP iteratively decouples the original vector inference problem to scalar inference problems

 $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$

$$\begin{cases} R_1 = x_1 + \tilde{n}_1 \\ \vdots \end{cases}$$

decoupling principle

Notes of AMP

 ✓ For i.i.d. Gaussian A, AMP is proved to be asymptotically Bayesian optimal and rigorously analyzed via state evolution (SE) [BM11]

✓ For general matrices **A**, AMP may diverge [BM11]

✓ Vector AMP (VAMP) converges for right-rotationally invariant matrices [RSF16]

• The EP perspective of AMP:

- Explicitly establishing the relationship between AMP and EP for the first time
- ✓ Simplifying the extension of AMP to the complex-valued AMP (simply using circularlysymmetric Gaussian) [MWKL15b]

✓ Providing a unified view of AMP and VAMP (derived from scalar EP [MWKL15a] and vector EP [RSF16], respectively)

X. Meng, S. Wu, L. Kuang, and J. Lu, "An expectation propagation perspective on approximate message passing," IEEE Signal Processing Letters, vol. 22, no. 8, pp. 1194-1197, Aug. 2015.

II. Generalized Linear Models

Generalized Linear Models

□ Motivations

- GLM is more general: the measurements are often obtained in a nonlinear way
 ✓ Difficult to perform inference due to the nonlinearity (non-Gaussian likelihood)
- SLM inference algorithms have already been extensively studied
 - ✓ Simple to design and analyze
 - ✓ Various algorithms, e.g., AMP and sparse Bayesian learning (SBL) have already been proposed

Generalized Linear Models

Motivations

- GLM is more general: the measurements are often obtained in a nonlinear way
 ✓ Difficult to perform inference due to the nonlinearity (non-Gaussian likelihood)
- SLM inference algorithms have already been extensively studied
 - ✓ Simple to design and analyze
 - ✓ Various algorithms, e.g., AMP and sparse Bayesian learning (SBL) have already been proposed

Is it possible to perform the GLM inference using the existing SLM inference algorithms?

□ Two Equivalent Factor Graphs of GLM

□ Two Equivalent Factor Graphs of GLM

(a) factor graph of GLM

(b) Equivalent factor graph of GLM

□ Decoupling GLM into SLM via EP

$$p_{0}(\mathbf{x}) \quad \mathbf{x} \quad \delta(\mathbf{z} - \mathbf{A}\mathbf{x}) \quad \mathbf{z} \quad m_{z \to p}(\mathbf{z}) \quad p(\mathbf{y} | \mathbf{z})$$

$$m_{p \to z}(\mathbf{z})$$

$$m_{z \to p}^{t-1}(\mathbf{z}) \propto \mathcal{N}(\mathbf{z}; z_{A}^{ext}(t-1), v_{A}^{ext}(t-1)I) \quad \text{EP message passing}_{(t-\text{th iteration})}$$

$$m_{p \to z}^{t}(\mathbf{z}) \propto \frac{\operatorname{Proj}_{\Phi}\left(p(\mathbf{y} | \mathbf{z})m_{z \to p}^{t-1}(\mathbf{z})\right)}{m_{z \to p}^{t-1}(\mathbf{z})} \propto \mathcal{N}(\mathbf{z}; z_{B}^{ext}(t), v_{B}^{ext}(t)I)$$

□ Two Equivalent Factor Graphs of GLM

(a) factor graph of GLM

(b) Equivalent factor graph of GLM

□ Decoupling GLM into SLM via EP

$$p_{0}(\mathbf{x}) \quad \mathbf{x} \quad \delta(\mathbf{z} - \mathbf{A}\mathbf{x}) \quad \mathbf{z} \quad m_{z \to p}(\mathbf{z}) \quad p(\mathbf{y} | \mathbf{z})$$

$$m_{p \to z}(\mathbf{z}) \quad \mathbf{m}_{p \to z}(\mathbf{z})$$

$$m_{p \to z}^{t-1}(\mathbf{z}) \propto \mathcal{N}(\mathbf{z}; z_{A}^{ext}(t-1), v_{A}^{ext}(t-1)I) \quad \text{EP message passing}_{(t-\text{th iteration})}$$

$$m_{p \to z}^{t}(\mathbf{z}) \propto \frac{\operatorname{Proj}_{\Phi}\left(p(\mathbf{y} | \mathbf{z})m_{z \to p}^{t-1}(\mathbf{z})\right)}{m_{z \to p}^{t-1}(\mathbf{z})} \propto \mathcal{N}(\mathbf{z}; z_{B}^{ext}(t), v_{B}^{ext}(t)I)$$

□ Decoupling GLM into SLM via EP

Decoupling GLM into SLM via EP

• The original GLM is iteratively decoupled into a sequence of simple SLM problems

Note: The computation of posterior mean and variance of z in module A may differ for different SLM inference methods.

Decoupling GLM into SLM via EP

• The original GLM is iteratively decoupled into a sequence of simple SLM problems

X. Meng, S. Wu and J. Zhu, "A unified Bayesian inference framework for generalized linear model," IEEE Signal Processing Letters, vol. 25, no. 3, Mar. 2018.

□ From AMP to Gr-AMP

□ From AMP to Gr-AMP

• Relation of Gr-AMP to GAMP

- Gr-AMP is precisely equivalent to GAMP when T0 = 1 and thus provides an insightful perspective on GAMP: In effect, GAMP performs one iteration of AMP each time after transforming the GLM problem to a pseudo SLM problem.
- ✓ A more flexible message passing schedule: double-loop implementation

• Quantized CS for 1,2,3-bit cases: N=1024,M=512,SNR=50dB

- Gr-AMP and GAMP converge to the same performance for i.i.d. Gaussian A
- Total number iterations of AMP are about the same while **the number of MMSE operations is reduced** for Gr-AMP.

X. Meng, S. Wu and J. Zhu, "A unified Bayesian inference framework for generalized linear model," IEEE Signal Processing Letters., vol. 25, no. 3, Mar. 2018.

□ From VAMP/SBL to Gr-AMP/Gr-SBL

- Initialization $\mathbf{z}_{A}^{ext}(0), v_{A}^{ext}(0)$
- For t = 1: T, Do
 - 1. Perform component-wise MMSE
 - 2. Update $\mathbf{z}_{B}^{ext}(t), v_{B}^{ext}(t)$
 - 3. Perform VAMP/SBL for T0 iterations
- 4. Compute $\mathbf{z}_{A}^{post}(t), v_{A}^{post}(t)$ and then update $\mathbf{z}_{A}^{ext}(t), v_{A}^{ext}(t)$

□ From VAMP/SBL to Gr-AMP/Gr-SBL

The Gr-VAMP/Gr-SBL Algorithm • Initialization $\mathbf{z}_{A}^{ext}(0), v_{A}^{ext}(0)$ • For t = 1: T, Do 1. Perform component-wise MMSE 2. Update $\mathbf{z}_{B}^{ext}(t), v_{B}^{ext}(t)$ 3. Perform VAMP/SBL for T0 iterations 4. Compute $\mathbf{z}_{A}^{post}(t), v_{A}^{post}(t)$ and then update $\mathbf{z}_{A}^{ext}(t), v_{A}^{ext}(t)$

Performance of de-biased NMSE for 1-bit CS

✓ N =512,M=2048,SNR=50dB, sparse ratio 0.1

✓ T0 = 1 for both Gr-VAMP and Gr-SBL

✓ When conditional number is 1, all kinds of algorithms performs nearly the same.

✓ As the condition number increases, the recovery performances degrade smoothly for Gr-VAMP/GVAMP/Gr-SBL while both Gr-AMP and GAMP diverge for even mild condition number, which show the robustness of Gr-VAMP/Gr-SBL/GVAMP for general matrices.

X. Meng, S. Wu and J. Zhu, "A unified Bayesian inference framework for generalized linear model," IEEE Signal Processing Letters., vol. 25, no. 3, Mar. 2018.

Bilinear GLM Problems

Assumptions

A(·) is a known affine linear function of unknown vector $\theta_A = \mathbf{b}$, i.e.,

$$\mathbf{A}(\mathbf{b}) = \mathbf{A}_0 + \sum_{q=1}^{Q} b_q \mathbf{A}_q \qquad \Theta \triangleq \{\theta_X, \theta_A, \theta_Y\}$$

• Goal

To jointly infer X and A, given Y with unknown parameters Θ

$$\hat{\boldsymbol{\Theta}}_{\mathrm{ML}} = \underset{\boldsymbol{\Theta}}{\operatorname{argmax}} p_{\mathbf{Y}}(\mathbf{Y}; \boldsymbol{\Theta}),$$

 $\hat{\mathbf{X}}_{\mathrm{MMSE}} = \mathrm{E}[\mathbf{X}|\mathbf{Y}; \hat{\mathbf{\Theta}}_{\mathrm{ML}}],$

Bilinear GLM Problems

• Assumptions

A(·) is a known affine linear function of unknown vector $\theta_A = \mathbf{b}$, i.e.,

$$\mathbf{A}(\mathbf{b}) = \mathbf{A}_0 + \sum_{q=1}^{Q} b_q \mathbf{A}_q \qquad \Theta \triangleq \{\theta_X, \theta_A, \theta_Y\}$$

• Goal

To jointly infer X and A, given Y with unknown parameters Θ

 $\hat{\boldsymbol{\Theta}}_{\mathrm{ML}} = \underset{\boldsymbol{\Theta}}{\operatorname{argmax}} p_{\mathbf{Y}}(\mathbf{Y}; \boldsymbol{\Theta}),$

 $\hat{\mathbf{X}}_{\mathrm{MMSE}} = \mathrm{E}[\mathbf{X}|\mathbf{Y}; \hat{\mathbf{\Theta}}_{\mathrm{ML}}],$

Intractable!

Basic Idea:

✓ First considering the simple case when the likelihood $p(\mathbf{Y} | \mathbf{Z}; \theta_{Y})$ is Gaussian, i.e.,

$$\mathbf{Y} = \mathbf{A}(\theta_A)\mathbf{X} + \mathbf{N}$$

✓ Extending to generalized nonlinear observations using the proposed unified framework for GLM

Gilder Standard Bilinear Problems

$$\mathbf{Y} = \mathbf{A}(\theta_{A})\mathbf{X} + \mathbf{N} \qquad \Theta \triangleq \{\theta_{X}, \theta_{A}, \theta_{Y}\}$$

$$\mathbf{X} \sim p(\mathbf{X}; \theta_{X}) = \prod_{i,j}^{L} p(x_{ij}; \theta_{X}) = \prod_{l=1}^{L} p(\mathbf{x}_{l}; \theta_{X}) \qquad \mathbf{Y} \sim p(\mathbf{Y} | \mathbf{A}(\theta_{A})\mathbf{X}; \theta_{Y}) = \prod_{l=1}^{L} \mathcal{N}(\mathbf{y}_{l}; \mathbf{A}(\theta_{A})\mathbf{x}_{l}, \gamma_{w}^{-1}\mathbf{I})$$

$$\mathbf{EM \ learning \ framework}$$

$$\mathbf{E}\text{-step:} \qquad Q(\Theta, \Theta^{t}) = \mathbf{E}_{p(\mathbf{X}|\mathbf{Y};\Theta^{t})} \left[\log p(\mathbf{X}, \mathbf{Y}; \Theta^{t})\right]$$

$$\mathbf{Iterating}$$

$$\mathbf{M}\text{-step:} \qquad \Theta^{t+1} = \arg \max_{\Theta} Q(\Theta, \Theta^{t})$$

Gilder Standard Bilinear Problems

Standard Bilinear Problems

$$\mathbf{Y} = \mathbf{A}(\theta_{A})\mathbf{X} + \mathbf{N} \qquad \Theta \triangleq \{\theta_{X}, \theta_{A}, \theta_{Y}\}$$

$$\mathbf{X} \sim p(\mathbf{X}; \theta_{X}) = \prod_{i,j}^{L} p(x_{ij}; \theta_{X}) = \prod_{l=1}^{L} p(\mathbf{x}_{l}; \theta_{X}) \qquad \mathbf{Y} \sim p(\mathbf{Y} | \mathbf{A}(\theta_{A})\mathbf{X}; \theta_{Y}) = \prod_{l=1}^{L} \mathcal{N}(\mathbf{y}_{l}; \mathbf{A}(\theta_{A})\mathbf{x}_{l}, \gamma_{w}^{-1}\mathbf{I})$$

$$\mathbf{EM \ learning \ framework}$$

$$\mathbf{E}\text{-step:} \qquad Q(\Theta, \Theta^{t}) = \mathbb{E} \sup_{\substack{p(\mathbf{X}|\mathbf{Y};\Theta^{t}) \\ \mathbf{Iterating}}} \left[\log p(\mathbf{X}, \mathbf{Y}; \Theta^{t})\right]$$

$$\mathbf{E}\text{-Step Too} Complicated!$$

$$p(\mathbf{X}|\mathbf{Y};\Theta^{t})$$

Solution

✓ The posterior distribution $p(\mathbf{X}|\mathbf{Y};\Theta^t)$ can be approximated by message passing algorithms, e.g., AMP, and VAMP. In each iteration of EM

$$p(\mathbf{X}|\mathbf{Y};\Theta^t)$$
 Replaced by $q(\mathbf{X}|\mathbf{Y};\Theta^t)$ message passing result

Bilinear Adaptive VAMP

 $m_{x \to f_{Y}}^{t-1}\left(\mathbf{X}\right)$

message in the last (t-1) iteration

□ From Linear to Nonlinear observations

From Linear to Nonlinear observations

• Similar to GLM, using EP, it can be iteratively decoupled into two modules

Bilinear Adaptive Generalized Vector Approximate Message Passing (BAd-GVAMP) Algorithm

X. Meng, and J. Zhu, "Bilinear Adaptive Generalized Vector Approximate Message Passing," IEEE Access, 2019
Experimental results of BAd-GVAMP

• Experiment 1: Quantized Compressed Sensing with matrix uncertainty

$$\mathbf{y} = Q(\mathbf{A}(\mathbf{b})\mathbf{c} + \mathbf{w}) \quad \mathbf{A}(\mathbf{b}) = \mathbf{A}_0 + \sum_{i=1}^G b_i \mathbf{A}_i$$

 $\{\mathbf{A}_i\}_{i=0}^G \in \mathbb{R}^{M \times N}$ are known, **b** are the unknown uncertainty parameters.

 $\text{SNR} \triangleq 10 \log \frac{\text{E} \|\mathbf{Ac}\|^2}{\text{E} \|\mathbf{w}\|^2} = 40 \text{ dB}$

 \checkmark c is generated with uniformly random support with K nonzero elements from i.i.d N(0,1), we set N = 256, G = 10, K = 10

✓ For M/N = 1, the NMSE in dB is shown in left figure:

-- Converges fast (20-30 iterations)

-- Same as the oracle performance.

X. Meng, and J. Zhu, "Bilinear Adaptive Generalized Vector Approximate Message Passing," IEEE Access, 2019

□ Experimental results of BAd-GVAMP

• Experiment 1: Quantized Compressed Sensing with matrix uncertainty

$$\mathbf{y} = Q(\mathbf{A}(\mathbf{b})\mathbf{c} + \mathbf{w}) \quad \mathbf{A}(\mathbf{b}) = \mathbf{A}_0 + \sum_{i=1}^G b_i \mathbf{A}_i$$

 $\{\mathbf{A}_i\}_{i=0}^G \in \mathbb{R}^{M \times N}$ are known, **b** are the unknown uncertainty parameters.

$$\text{SNR} \triangleq 10 \log \frac{\text{E} \|\mathbf{Ac}\|^2}{\text{E} \|\mathbf{w}\|^2} = 40 \text{ dB}$$

 ✓ c is generated with uniformly random support with K nonzero elements from
 i.i.d N(0,1), we set N = 256, G = 10, K = 10

✓ Then, the performance vs. ratio M/N is evaluated:

-- As the increase of M/N, the recovery performance improves

-- Approaching the oracle performance in a wide range of M/N values

X. Meng, and J. Zhu, "Bilinear Adaptive Generalized Vector Approximate Message Passing," IEEE Access, 2019

Experimental results of BAd-GVAMP

• Experiment 2: Self-Calibration from quantized measurements

$$\mathbf{y} = Q(\operatorname{diag}(\mathbf{H}\mathbf{b})\mathbf{\Psi}\mathbf{c} + \mathbf{w}) = Q\left(\left[\sum_{i=1}^{G} b_{i}\operatorname{diag}(\mathbf{h}_{i})\mathbf{\Psi}\right]\mathbf{c} + \mathbf{w}\right)$$

with known $\mathbf{H} \in \mathbb{R}^{M \times G}$ and $\mathbf{\Psi} \in \mathbb{R}^{M \times N}$.

Goal: to recover the K-sparse signal vector c and the calibration parameters b

✓ K = 10, G = 8, M = 128 and SNR = 40 dB.
✓ H is constructed using Q randomly selected columns of the Hadamard matrix, the elements of b and Ψ are i.i.d. drawn from N(0; 1), and c is generated with K nonzero elements i.i.d. drawn from N(0; 1).

$$\text{NMSE} = 10 \log \frac{\|\hat{\mathbf{b}}\hat{\mathbf{c}}^{\text{T}} - \mathbf{b}\mathbf{c}^{\text{T}}\|_{\text{F}}^2}{\|\mathbf{b}\mathbf{c}^{\text{T}}\|_{\text{F}}^2}$$

✓ As the sampling rate increases, the median NMSE decreases.

✓ Near oracle performance.

X. Meng, and J. Zhu, "Bilinear Adaptive Generalized Vector Approximate Message Passing," IEEE Access, 2019

Experimental results of BAd-GVAMP

• Experiment 3: Structured dictionary learning from quantized measurements

Goal: Finding a dictionary matrix A and sparse matrix X such that

$$\mathbf{Y} = Q(\mathbf{A}\mathbf{X} + \mathbf{N}) \quad \mathbf{A} \in \mathbb{R}^{M \times N}, \mathbf{X} \in \mathbb{R}^{N \times L}$$
$$Q(\bullet) \text{ is a quantization function } \mathbf{A} = \sum_{i=1}^{G} b_i \mathbf{A}_i$$

- Considering approximate Bayesian inference methods for generalized linear models (GLM) using the message passing approach
- Deriving the approximate message passing (AMP) algorithm from expectation propagation
- Proposing a unified approximate inference framework for GLM
 - Simplifying the extension of various SLM inference algorithms to GLM inference
 - Providing new insights on some existing GLM inference algorithms
- Extending the GLM to bilinear matrix recovery problem and proposing one efficient message passing algorithm called BAd-VAMP

- [DMM09]Donoho, Maleki, Montanari. "Message-passing algorithms for compressed sensing." Proceedings of the National Academy of Sciences 106.45 (2009): 18914-18919.
- [DMM10] Donoho, Maleki, Montanari, "Message passing algorithms for compressed sensing: I. motivation and construction." Proc IEEE ITW, 20110
- [BM11] Bayati, Montanari. "The dynamics of message passing on dense graphs, with applications to compressed sensing." IEEE Transactions on Information Theory 57.2 (2011): 764-785.
- [Rangan10] Rangan, Sundeep. "Estimation with random linear mixing, belief propagation and compressed sensing." Information Sciences and Systems (CISS), 2010 44th Annual Conference on. IEEE, 2010.
- [Tanaka 02] Tanaka, Toshiyuki. "A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors." IEEE Transactions on Information theory 48.11 (2002): 2888-2910.
- [Minka01] Minka, Thomas P. "Expectation propagation for approximate Bayesian inference." 2001
- [OW05] Opper, Manfred, and Ole Winther. "Expectation consistent approximate inference." Journal of Machine Learning Research 6.Dec (2005): 2177-2204.
- [Rangan11] Rangan, "Generalized approximate message passing for estimation with random linear mixing." Proc IEEE ISIT 2011
- [RSF16] Rangan, Schniter, Fletcher, "Vector approximate message passing", 2016
- [SRF16] P. Schniter, S. Rangan, and A. K. Fletcher, "Vector approximate message passing for the generalized linear model," in Proc. 50th Asilomar Conf. Signals, Syst. Comput., Nov. 2016, pp. 1525-1529.
- [Kabashima 03] Kabashima Y. A , " CDMA multiuser detection algorithm on the basis of belief propagation" , Journal of Physics A: Mathematical and General, 2003, 36(43)
- [KMSSZ12] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, "Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices," Journal of Statistical Mechanics: Theory and Experiment, vol. 2012, no. 08, p. P08009, 2012.
- [MWKL15a] X. Meng, S. Wu, L. Kuang, and J. Lu, "An expectation propagation perspective on approximate message passing," IEEE Signal Process. Lett., vol. 22, no. 8, pp. 1194-1197, Aug. 2015.
- [MWKL15b] X. Meng, S. Wu, L. Kuang, and J. Lu, " Concise derivation of complex Bayesian approximate message passing via expectation propagation," arXiv preprint arXiv:1509.08658, 2015.
- [WKNLHDQ14] S. Wu, L. Kuang, Z. Ni, J. Lu, D. Huang, and Q. Guo, "Low-complexity iterative detection for large-scale multiuser MIMO-OFDM systems using approximate message passing," *IEEE J. Sel. Topics Signal Process.*, vol. 8, no. 5, pp. 902–915, Oct. 2014.
- [MWZ18]X. Meng, S. Wu and J. Zhu, "A unified Bayesian inference framework for generalized linear model," IEEE Signal Process. Lett., vol. 25, no. 3, Mar. 2018.

- [MZ18] X. Meng, and J. Zhu, "Bilinear Adaptive Generalized Vector Approximate Message Passing," arXiv preprint arXiv:1810.08129, 2018
- [PSC14a] J. T. Parker, P. Schniter, and V. Cevher, "Bilinear generalized approximate message passing-Part I: Derivation," IEEE Trans. Signal Process., vol. 62, no. 22, pp. 5839-5853, Nov. 2014.
- [PSC14b] J. T. Parker, P. Schniter, and V. Cevher, "Bilinear generalized approximate message passing-Part II: Applications," IEEE Trans. Signal Process., vol. 62, no. 22, pp. 5854-5867, Nov. 2014.
- [PS16] J. T. Parker and P. Schniter, "Parametric bilinear generalized approximate message passing," IEEE J. Sel. Topics Signal Process., vol. 10, no. 4, pp. 795-808, 2016.
- [KKMSZ16] Y. Kabashima, F. Krzakala, M. M['] ezard, A. Sakata and L. Zdeborov['] a, "Phase transitions and sample complexity in bayesoptimal matrix factorization," IEEE Trans. Inf. Theory, vol. 62, no. 7, pp. 4228-4265, 2016.
- [SRF] P. Schniter, S. Rangan, and A. K. Fletcher, "Vector approximate message passing for the generalized linear model," in Proc. 50th Asilomar Conf. Signals, Syst. Comput., Nov. 2016, pp. 1525-1529.
- [ML17] J. Ma and L. Ping, "Orthogonal AMP," IEEE Access, vol. 5, pp. 2020-2033, 2017.
- [HWJ17] H. He, C. K. Wen, and S. Jin, "Generalized expectation consistent signal recovery for nonlinear measurements," in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2017, pp. 2333-2337.
- [QZW18] Zou Q, Zhang H, Wen C K, et al., " Concise Derivation for Generalized Approximate Message Passing Using Expectation Propagation," IEEE Signal Processing Letters, 2018.
- [SFRS18] S. Sarkar, A. K. Fletcher, S. Rangan and P. Schniter, "Bilinear recovery using adaptive vector-AMP," available at
- <u>https://arxiv.org/pdf/1809.00024.pdf</u>.
- [VS13] J. P. Vila and P. Schniter, "Expectation-maximization Gaussian-mixture approximate message passing," IEEE Trans. Signal Process., vol. 61, no. 19, pp. 4658-4672, Oct. 2013.
- [KMZ13] F. Krzakala, M. Mezard, and L. Zdeborova, "Compressed sensing under matrix uncertainty: Optimum thresholds and robust approximate message passing," ICASSP, 2013.

Thank You §

ありがとう

Q&A