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Background

B Compressed Sensing
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- < Wavelet 4 - g
x 10* Coefficients

2 :
1.5/
1!

0.5

0
~0.5}

1

0 2 4 6 8 10 Throwing away 97.5%
x 10° of the coefficients

(a) (b) (c)

e Massive data/signal acquisition Sparsity of images

V' Alotof redundancy in natural data, e.g. images
Most natural signals are compressible

Motivation:

Is it possible to acquire data/signals using as few measurements as possible?

Figure from E. J. Candes and M. B. Wakin 2008 3



Background

B Compressed Sensing

Compressed Sensing (CS) Mathematical Formulation of CS

N>M

M

sample compress —* transmit/store

X (Unknown image) - LU %

sparse
wavelet
transform Mx1

Measurements , > e Noise

, gnal
receive decompress v, 7 m — A ll-posed
> Vy=AX+1N M<N Problem!

Y(known observations) X=1

Goal: Recover a sparse or compressible signal from M <« N measurements

Solution: Exploit the structure, e.qg., sparsity of the target signal

Theoretical guarantee:
If target signal x is k-sparse and A is iid Gaussian, then M = O(klog N) suffices to recover X

[Candes-Romberg-Tao2006] Candes Romberg Tao

This slide is copy from https://www.raeng.org.uk/publications/other/candes-presentation-frontiers-of-engineering 4




Background

B Quantized Compressed Sensing

N>M

compress transmit/store

X (Unknown image) = 32 %

sparse . . . SR
wavelet Quantization is essential !

transform

Cg
g
T
:

Sensing Matrix

receive decompress —— 7 | s Nx1 Nx1
Measurements e s Noise

x= P ' signal

Y (known observations)




Background

B Quantized Compressed Sensing

N>M

compress transmit/store

X(Unknown image) = " 32 %

sparse . . . SR
wavelet Quantization is essential !

transform

EEE EEEEE BN SR

N _ g
: LY R N x1 N x 1
recelve decompress €T Measurements (ADC) oo Noise

x= ? signal

Y (known observations)




Background

B Quantized Compressed Sensing

N>>M y = Q(AX + n)

compress transmit/store

X (Unknown image) = N = % Z

sparse . . . < 17
wavelet Quantization is essential !

transform l M x N

Sensing Matrix

N Mx1 quantizar

' — - Nx1l Nx1
receive decompress €T m Measurements (ADC) sporse i
Y(known observations) X=?

Extreme case: 1-bit quantization

y =sign(Ax+n) e {-1,+ 1}

Practical Challenges
output
¥ Quantization, especially low-precision quantization, leads to severe information loss

v Quantization is a non-linear operation, which makes the linear algorithms no longer work

v Conventional L1 sparsity fails to capture the complex structure in the target signal




A Bayesian Perspective

B Bayesian Perspective

Inverse Problems

e

X — | f(x)

Unknown
\_

\

J/

__)y

Known Observations

W

—)
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\_

Bayesian Inference

Posterior Prior Likelihood
pX)p(y [ X)
px|y) =
p(y)
Bayes’ rule

~

/

Thomas Bayes (1702-1761)



A Bayesian Perspective

B Bayesian Perspective

Inverse Problems f Bayesian Inference x P
Posterior Prior  Likelihood e /O
Unknown o ) Known Observations _ P PLY F7EE RN
. px|y) = o AU e, E6 B
what is x? p(y) qne) )y
K Bayes’ rule J Thomas*'B.aye»s (1702-1761)

B Why Bayesian?

KNOWLEDGE &

QUESTION Structure Constraint as Prior Distribution

The standard L1 sparsity can be viewed as a prior

-\

l l distribution, I.e, Laplace distribution.

More complicated prior, e.qg., structured sparsity,

viake assumplons [;I;Vle:a.“:;; Predict & Benre and low-rankness can be used to improve
Ot performance.

However, hand-crafted priors might still fail to
capture the rich structure in natural signals.

Bayesian Learning Framework [pavid Blei 2016]




A Bayesian Perspective

B Key idea

You can easily recognize

The more you know a priori | o sndesian -
the less you need!

10



A Bayesian Perspective

B Key idea

You can easily recognize

The more you know a priori | o sndesian -
the less you need!

How to obtain a good
prior knowledge?

Learn a good prior using powerful
deep generative models

11



Generative Models

B Deep Generative Models

“What | cannot create, | do not understand” ——Richard Feynman

Train

Generative Models

Samples from a Data Distribution Neural Network
i.1.d.
{x17x2a T 7XN} ~ P(X)

Sample

Generative Models

Generative Learning

Credit to: https://cvpr2022-tutorial-diffusion-models.github.io

12



Generative Models

B Overview of different types of generative models

GAN: Adversarial ! < | Discriminator 7 Generator ]
training D(x) G(z)

VAE: maximize - a% A 2 Decoder | !
variational lower bound q¢(z|x) po(x|2z)
Flow-based models: X |—» Flow > Z > Inlllerse X
Invertible transform of f (x) [ (2)

distributions
Diffusion models:_ X0 X1 Xo - .z

Gradually add Gaussian .- - - - - - - - - *--------
noise and then reverse

Diffusion Models (aka Score-based Generative models):
Emerging as the most powerful generative models !



Score-based Generative Models

B Score-based Generative Models (SGM)

To model the gradient of the log probability density function, known as the (Stein) score function

Vx ].Og p(X) Vector Field

14



Score-based Generative Models

B Score-based Generative Models (SGM)

To model the gradient of the log probability density function, known as the (Stein) score function

vx log p(X) Vector Field

log density of gaussian mixture log p(x) Score vector field Vlog p(x) for Gaussian Mixture

Bl score of GMM

15



Score-based Generative Models

B Why caring about score functions?

& Avoiding the difficulty of intractable normalizing constants.

€ —f 9(x)
ZQ — Je _f@(x)dX

pol(x) =

sp(x) = Vxlogpe(x) = —Vx fo(x) —= —Vx fo(x)
=0

Training via score-matching A. Hyvarinen 2005

o) | Vx log p(x) — s6(x) 3]

16



Score-based Generative Models

B Why caring about score functions?

& Avoiding the difficulty of intractable normalizing constants.

€ _f 9(x)
ZQ — Je _fe(x)dX

pol(x) =

sg(x) = Vxlogps(x) = —Vx fo(x) —

Training via score-matching A. Hyvarinen 2005

o) [[| Vx log p(x) — sg(x)]|3]

¢ Enabling sampling using Langevin dynamics G- Parisi 1981

X1 < X; + €V logp(x)+ \/2_ez7;, 1 =20,1,--

Sampling using learned score function

sp(x) ~ Vi log p(x)

X converges to samples from p(x)
whene¢ - 0.K — o0

-, K ZZ'NN(O,I).

17



Score-based Generative Models

B Noise Perturbed Score-Matching
Estimated scores are only accurate in high density regions.

Data density Data scores Estimated scores
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Figure credit to Yang Song
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Original distribution
p(x)

Corrupted noise
X' =X Hpz

Noise-perturbed
/
pp(X)

Z ~ N(0,I)

Score-based Generative Models

B Noise Perturbed Score-Matching
Estimated scores are only accurate in high density regions.

Data density

Data scores
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Estimated scores are accurate everywhere for noise perturbed data
Perturbed density

Perturbed scores
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Score-based Generative Models

B Noise Perturbed Score-Matching
Estimated scores are only accurate in high density regions.

Data density Data scores Estimated scores
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Estimated scores are accurate everywhere for noise perturbed data

Q: how to choose an appropriate noise scale f for the perturbation?

Large noise: cover the low-density regions well, but different from the original distribution

Small noise: similar to the original distribution, but does not cover low-density regions well



Score-based Generative Models

B Noise Perturbed Score-Matching

Annealing: using multiple noise scales { ﬁt}thl for the perturbation!
X, =X+ Pz O0<p<p<—<p

pp(X,) = Jp(X)N(xt | X, f7)dxX

21



Score-based Generative Models

B Noise Perturbed Score-Matching

Annealing: using multiple noise scales { ﬁt}thl for the perturbation!
X, =X+ Pz O0<p<p<—<p

pp(X,) = J p(X)N(X, | X, f)dx

Noise Conditional Score Network (NCSN) Song 2019
Using neural network to estimate the score thlog pﬂt(xt) of each noise-perturbed distribution pﬂt(xt)

So(X;, 1) & Vy log py(X,) V1

Estimated Score True Score

T
Loss function: ) AE, [V 1ogpj(x,) — sy(x,, 1)||?

=1 29



Score-based Generative Models

B Noise Perturbed Score-Matching

Annealing: using multiple noise scales { ﬁt}thl for the perturbation!
X, =
[

samples of x,

estimated
scores

Figure credit to Yang Song



Score-based Generative Models

B A Big Picture
X =X, + fz, 0<py<py<-<py

Forward diffusion process (fixed) A sequence of noise levels

...... o

Forward Process

Data

24



Score-based Generative Models
B A Big Picture
X, = X, + fz, 0<f)<fr< - <pr

Forward diffusion process (fixed) A sequence of noise levels

€

Reverse denoising process

Forward Process XI;—I — XI; +a,

Data

generative)

Reverse Process

k
20,7,

l Score function

Approximated by neural network

SH(Xta [ )

Annealed Langevin dynamics '
Reverse it!




Score-based Generative Models

B Connection to demising diffusion probabilistic models (DDPM)
Xt = \/atxt_1+ \/l—atét_l Ay > Oy > =+ >C¥T>O

Forward diffusion process (fixed)

>

() [ ) [ (
The forward noise ¢, is estimated by  Reyerse denoising process (generative)
a denoting network €,(x,, 1)

Data

DDPM loss: L™ — |le: — €o(xe,t) |’

Score Estimation of thlog p(x,)

: 1
After some scaling S Q(Xp t) = — EH(Xt’ t)

Vi-a

_ 2
Score Matching Loss Ley = Et,x,xt”thlogP(Xt) — Sy(X;, D

26



QCS-SGM: Quantized CS with SGM

B OQur solution: QCS-SGM

......... ----.----.----.----..----.----.----..----.----.-----.----.-..-.----oo------oo..,.. B T T P T P PP P PR PP PP
\d - . *
- * .

Quantized Measurements

—
ns X —elx+may

Data samples

-
.
...........
.........
....................................................................................................................................................................

--------------------------------------------------------------------------------------------------
. .,
* oS

Bayesian Inference

Posterior Prior Likelihood

pX)p(y | x)

*p(y)

Vilog p(x|y) = V,log p(x) + V,log p(y | x)

Likelihood

Posterior Score Prior Score
Score

27



QCS-SGM: Quantized CS with SGM

B OQur solution: QCS-SGM

Ilterative Sampling
Equation

Diffusion Model Prior Quantized Measurements BayeSian Inference
f‘ . - Posterior  Prior  Likelihood
B
5 x|y < 2P 1Y
—— —
.. - score X > Q(Ax + n) o y
' matching
' a V,dogp(x|y) = V,log p(x) + Vlog p(y |x)
Data samples elioo
1 . . ikelihoo
Gty seewees) \ S\ Posrer S Prerseore S
Forward diffusion process (fixed)

Noise

<€

Reverse denoising process (generative) Intractable!

X, =X, + at[v logp<x> +V, Jogp(y| X1+ 2az,

Samples From diffusion models From quantized measurements

28



QCS-SGM: Quantized CS with SGM

B Our solution: QCS-SGM

ply | xt) = /p(y | Xo de
l l

Perturbed signal Original signal Reverse transition probability

Tractable (Gaussian) unknown

Do Txabteall

[ p(x¢ | %0)p(%0)dxq

Using the Bayes’ rule:

p(Xg | xt

Note: The result is intractable even for linear model y = Ax, + n

29



e Assumption 1

The prior p(XO) is non-informative w.r.t. p(Xt ‘ XO)

QCS-SGM: Quantized CS with SGM

B Two Assumptions of QCS-SGM

P(Xo| X)) x px,]Xo)

Asymptotically accurate when the perturbed noise is negligible

Verification of p(X,|X) «x p(x]|x,)

a
¢'.'
B

0 100 200 300 400

step: t

500

variance

10%

102 |

109

Verification of p(X,|Xx) « p(x|x,)

0 100 200 300 400 500

step: t



QCS-SGM: Quantized CS with SGM

B Two Assumptions of QCS-SGM

e Assumption 1

The prior p(XO) is non-informative w.r.t. p(Xt ‘ XO)

p(Xg|X,)  p(X;|Xp)

Asymptotically accurate when the perturbed noise is negligible

e Assumption 2

The sensing matrix A is row-orthogonal, i.e.,

AA' = Diagonal matrix

(Approximately) satisfied by many popular CS matrices
e.g., DFT, DCT, Hadamard, and random Gaussian matrices, etc.



QCS-SGM: Quantized CS with SGM

B Results of Pseudo-likelihood Score

e Theorem 1: Under assumptions 1 and 2, we obtain a closed-form solution to the likelihood score

Vi logp(y | x) = A"G(f,y.A,x)

where . Vsl
— X
G(ﬂp ya Aa Xz‘) . [gla g27°-°9gM] = R
ii2 [2 T T
exp (—%) — exp <—%> i X, — Uy P a,x,— I,
_ Ym Ym
m = 2 2
e (= cep |kl o |
\/02+,Bt2 H al H 2fl~yy exp (—?>dt \/ pi m | , pi mf 5
e Corollary: In the special case of linear case y=AxX + n
ry P y
A" (y—Axy)
o242

Vi logp(y | x,) = A’ (0T + ,ﬁtzAAT)_1 (y — Ax,)

v Explain the necessity of annealing term in Jalal et al. (2021a)

Al (y — Axt)
o>+ y7

thlogp(y | Xr) —

v Extend and improve Jalal et al. (2021a) in the general case



QCS-SGM: Quantized CS with SGM

B Resultant Algorithm
Algorithm 1: Quantized Compressed Sensing with SGM (QCS-SGM)

Input: {3;};_,, ¢, K,y, A, 0%, quantization codewords Q and thresholds {[l,,u,)|q € Q}
Initialization: x) ~ U/ (0,1)
1 fort =1to T do

2 at%eﬂf/ﬂ%
3 for k =1to K do
4

Only this term is different
k
Draw Zy ~ N(O, I) from SGM! >
¥ 1) as (12) (or (18 i
5 Compute G(3:,y, A, x; ™ ) as (12) (or (13) for 1-bit
k—1 k—1
6 X[ =X ay [se(x; ", Br)- V20, ZY

Output: X = x%

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Quantized Compressed Sensing with Score-Based Generative Models."
arXiv preprint arXiv:2211.13006 (2022). ICLR 2023

Code: https://github.com/mengxiangming/QCS-SGM



QCS-SGM: Quantized CS with SGM

B Experimental Results
1-bit CS on MNIST 28 x 28  Ground Truth 1-bit CS on CelebA 64 x 64

7z /mﬂ ?lﬂﬁ G‘ 3 I!Hﬁ'«\é
— = Rt

l.asso

CSGM
CSGM l

7'2. TF z'v'o" a"'é
AXENERNEX

ﬂ?Z,/Oq/‘f"\C?> vy
(a) MNIST, M = 200, ¢ = 0.05"" ""e"“t"b) CelebA, M = 4000, 0 = 0-001

The proposed QCS-SGM achieves remarkably better performances .



QCS-SGM:

B Experimental Results

Results of QCS-SGM on CelebA
in the fixed budget case
(QxM = 12288)

ne e 24
ale, G{JM ﬁ
*éb@f?

LS
).

] =

0 @lg

- ' ' »
“ @ e
ks ’ |
. -
,ﬂ.
sql e

]S
&'y

(c) 2-bit, M = 6144 (d) 3 bit, M = 4096
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QCS-SGM: Quantized CS with SGM

B Experimental Results M
FFHQ 256 x 256 high-resolution images Compression Ratio ~ —

1-bit 2-bit 3-bit Ground Truth

PSNR: 11.64 dB, SSIM: 0.500 PSNR: 24.18 dB, SSIM: 0.695 PSNR: 26.71 dB, SSIM: 0.753

The proposed QCS-SGM can even accurately recover high-resolution image
from only a few low-resolution (1,2,3-bit) quantized measurements

1
— <1
3
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QCS-SGM: Quantized CS with SGM

B Experimental Results

Comparison with Jalal et in the special linear case on MNIST

NT —~IFFT-O0ON~C
PAROAITTMRIO
ENIT —~7 ™
PFPOCCF"TDN M-
IT—=FITNAIIKN—=Y =
QOO0 ~NUOmaNrm
~05S O\ My ™
NOWwW -t OB
NOSAN—N NN

NT — =~ TJ i N~
WA QT MDY
NI —-n =g
™ O[> T SN P
~LQPQNH DT PP W
T N AN 07 R e T e
QO™ J N wn o m
Rl Y A s SR VNS i o S
od D 0o~ ) g O 9
P ™ot — DR N\

NT —~—~IFT\-0ON~0O
PAOAROATTMORIV
ESNT —~T e
P, TS NN
~SUVIYPNLOOST -3 WY
T=FTNAIYKN—= Y -
QOO I~ OOmoanrm
~ S >\ ™
NOW -0 Qv
NOSN—N AN M

(¢) Ours

(b) ALD (Jalal et al.,
2021a)

(a) Truth

0.05 and the condition number of matrix A 1s cond(A) = 1000

M =200, 0 =

The proposed QCS-SGM outperforms the Jalal et al for general matrices
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QCS-SGM+: Improved Quantized CS with SGM

B Limitation of QCS-SGM

QCS-SGM is limited to

(approximately) row-orthogonal matrices A

Why? The pseudo-likelihood is otherwise intractable

Intractable integration



QCS-SGM+: Improved Quantized CS with SGM

B A New Perspective

pseudo-likelihood

M
p(yIx0) = vl = Ax) = [ T] 1 (e + iem) € Q7 (um) N (30, € )
m=1 N—————

Partition Function (normalization term) Likelihood Prior

The pseudo-likelihood can be viewed as the partition function of random variables n,



QCS-SGM+: Improved Quantized CS with SGM

B A New Perspective

pseudo-likelihood M
~ —1 ~ —1\ 7~
plylxi) = (ylm = Ax) = [ L1 1 (G + fem) € Q" ()N (s 0,C; )
m=1 N—— ——— One fundameptal
Problem in Baypsian
Partition Function (normalization term) Likelihood Prior Inference

The pseudo-likelihood can be viewed as the partition function of random variables n,

Resort to the famous expectation propagation (EP)

f(‘,(ﬁm) — l((:m + ﬁm) € Q_](}’,,,)) f;l(ﬁm) = 1((Zm + ﬁ'm) S Q_I(,Vm))
L) f(iy) Ja(Tiyy) £d@) i) AG
(n, )= N(n i L)
e T S After EP
nl n2 T e o o nM nl ﬁz ® o o ﬁM
o /1 I - - h,f,‘ I
m,_, (7, N, , z'_‘ z'_() , ‘ f.(n,) = -/V(”z,m;F,F)
Ry -1 = - :
fp(m) = A/ (0;0,C7) Jy)  fliin) Je(fing)

(a) Original factor graph (b) Factor graph after EP



QCS-SGM+: Improved Quantized CS with SGM

B QCS-SGM+

Algorithm 1: QCS-SGM+

Input: {3:};_1,¢, v, IterEP, K,y, A, 02, quantization thresholds {[l,, u,)|q € Q}
Initialization: x§ ~ ¢/ (0, 1)

1 fort =1¢t0 T do

2 ai < €07/ B

3 fork =1t K do

4 Draw z* ~ N (0.1

Initialization: h* ,TF : hG,TG

> for ZZ; j‘;ﬁterﬁf do Running EP to approximate
¢ L the pseudo-likelihood
7 ¢ =5 7"
s h' =™ — hC
9 =21 _7C¢
L_ X
10 Compute Vi, logpg, (y | x¢) as (11)
11 X{ =X, 4 [Se(Xf_l,ﬁt) + 7V, log pg, (y | Xt)] + V207t
12 | X < X{

Output: X = x3

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "QCM-SGM+: Improved Quantized Compressed Sensing With Score-Based
Generative Models." arXiv preprint arXiv:2302.00919v2 (2023)

Code: https://github.com/mengxiangming/QCS-SGM-plus



QCS-SGM+: Improved Quantized CS with SGM

B Experimental Results

e (General Matrices

(a) 1ll-conditioned matrices
A = VXU"?!

V and U are independent Harr-distributed matrices
Ai _ 1/M

. . Where k 18 the condition number
(A

nonzero singular values of A satisfy

(b) correlated matrices

A = R HRR
1 1
where R, = R? € RM*M and R = R € RY*V [ H € RMX¥ i5 a random matrix

The (1, )) th element of both R1 and R2 1s p =/l and p 1s termed the correlation coefficient

42



QCS-SGM+: Improved Quantized CS with SGM

B Experimental Results

1-bit CS on MNIST and CelebA for ill-conditioned A (x = 103 for MNIST and x = 10° for CelebA)

47 L/ 04| 94Yac 9

” - i

th

Tru

BIPG
BIPG

/ rF -
W Y 3 4 8 &

70/ 04 @BXQC 9P
172/04 190579

(a) MNIST, M = 400,0 = 0.05, kK = 10° (b) CelebA, M = 4000, 0 = 0.001, k = 10°

SGM+ QCS-SGM OneShot
QCS-SGM+ QCS-SGM  OneShot

QCS

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods.
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QCS-SGM-+: Improved Quantized CS with SGM

B Experimental Results

MNIST , 1-bit GS with ill-conditioned A

T PT—h_ — BIPG
— % — _, ] —0o— OneShot
\ — %— QCS-SGM
N\ > QCS-SGM+
~207 * T~
(n N
2 *
oc ~
Z N o
% ~
154 a ¥
~.
~No—
& ——
T —
— =n
10° 102 10* 10°
condition number of A
. MNIST, 1-bit CS with correlated A
E T —
e ~
20 | TR T
1) ~ T
2 TR f
o
Z e ~
g_’ ~
156" gipa T
—G— OneShot | —0o— W
—#— QCS-SGM
—&— QCS-SGM+
10¢ . s
0.1 0.2 0.3 0.4

correlation coefficient p

. CIFAR-10, 1-bit CS with ill-conditioned A

=

T —%— QCS-SGM
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| %>\\
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™) h The
T 14} N -
o
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U) 13 i \
a \
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~N
N
11} S
10° 102 10* 10°
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It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods.
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QCS-SGM+;

B Experimental Results

Improved Quantized CS with SGM
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QCS-SGM+: Improved Quantized CS with SGM

B Experimental Results
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1-bit CS on CelebA for ill-conditioned A ( ¥ = 10° for CelebA), M = 4000 < N, ¢ = 0.1

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM.
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Brief Summary

B Summary

We proposed QCS-SGM, one quantized CS algorithm using score-based models (diffusion models), as
well as an advanced variant QCS-SGM+ for general sensing matrices.
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