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• Massive data/signal acquisition 
✓ A lot of redundancy in natural data, e.g. images 
✓     Most natural signals are compressible 

Motivation:  
Is it possible to acquire data/signals  using as few measurements as possible?  

Figure from E. J. Candes and M. B. Wakin 2008

Original Image Compressed Image

Sparsity of images 



Background
Compressed Sensing 
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Compressed Sensing (CS) Mathematical Formulation of CS

y = Ax + n

•Goal:  Recover a sparse or compressible signal from  measurementsM ≪ N

M ≪ N

•Solution: Exploit the structure, e.g., sparsity of the target signal

ill-posed 
Problem!

•Theoretical guarantee:  
If target signal  is -sparse and  is iid Gaussian, then  suffices to recover x 
 [Candes-Romberg-Tao2006] 

x k A M = O(k log N)
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Quantization is essential ! 

y = Ax + n

Quantized Compressed Sensing
Background
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Quantization is essential ! 

y = Q(Ax + n)

Q
quantizer 

(ADC)

Quantized Compressed Sensing
Background
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Quantization is essential ! 

✓ Quantization, especially low-precision quantization, leads to severe information loss 

✓ Quantization is a non-linear operation, which makes the linear algorithms no longer work  

✓ Conventional L1 sparsity  fails to capture the complex structure in the target signal

y = Q(Ax + n)

Q
quantizer 

(ADC)

•  Quantizer (ADC converter)
Extreme case: 1-bit quantization

y = sign(Ax + n) ∈ {−1, + 1}M

Practical Challenges

input

output

Background
Quantized Compressed Sensing



A Bayesian Perspective
Bayesian Perspective
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p(x |y) =
p(x)p(y |x)

p(y)

Bayesian Inference

Bayes’ rule

Posterior Prior Likelihood 

Inverse Problems



Bayesian Perspective
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p(x |y) =
p(x)p(y |x)

p(y)

Bayesian Inference

Bayes’ rule

Posterior Prior Likelihood 

Why Bayesian? 

Inverse Problems

Bayesian Learning Framework [David Blei 2016]

Structure Constraint as Prior Distribution

1. The standard L1 sparsity can be viewed as a prior 

distribution, i.e, Laplace distribution.

2. More complicated prior, e.g., structured sparsity, 

and low-rankness can be used to improve 
performance. 


3. However, hand-crafted priors might still fail to 
capture the rich structure in natural signals.


A Bayesian Perspective
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Key idea

The more you know a priori 
the less you need!

You can easily recognize 
someone you are familiar with  

at one single sight

A Bayesian Perspective
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Key idea

The more you know a priori 
the less you need!

Learn a good prior using powerful 
 deep generative models

How to obtain a good  
prior knowledge?  

You can easily recognize 
someone you are familiar with  

at one single sight

A Bayesian Perspective



Deep Generative Models

 Generative Learning Credit to: https://cvpr2022-tutorial-diffusion-models.github.io

 Generative Models

 Generative Models
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Generative Models

 “What I cannot create, I do not understand” ——Richard Feynman



Overview of different types of generative models
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Diffusion Models (aka Score-based Generative models):  
Emerging as the most powerful generative models ! 

Generative Models



Score-based Generative Models (SGM)

To model the gradient of the log probability density function, known as the (Stein) score function
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Score-based Generative Models

Vector Field



Score-based Generative Models (SGM)

To model the gradient of the log probability density function, known as the (Stein) score function
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Score-based Generative Models

Vector Field



Why caring about score functions? 
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Score-based Generative Models

 Avoiding the difficulty of intractable normalizing constants. 

Zθ = ∫ e−fθ(x)dx

Training via score-matching A. Hyvarinen 2005 



Why caring about score functions? 
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Score-based Generative Models

 Avoiding the difficulty of intractable normalizing constants. 

 Enabling sampling using Langevin dynamics 

Zθ = ∫ e−fθ(x)dx

Training via score-matching A. Hyvarinen 2005 

G. Parisi 1981

Sampling using learned score function

 converges to samples from   
when 

xK p(x)
ϵ → 0,K → ∞



Noise Perturbed Score-Matching 
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Score-based Generative Models
Estimated scores are only accurate in high density regions.

Original distribution
 p(x)

Figure credit to Yang Song



Noise Perturbed Score-Matching 
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Score-based Generative Models
Estimated scores are only accurate in high density regions.

Estimated scores are accurate everywhere for noise perturbed data 

Original distribution
 p(x)

Noise-perturbed

x′ = x + βz

Corrupted noise

z

pβ(x′ )
Figure credit to Yang Song



Noise Perturbed Score-Matching 
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Score-based Generative Models
Estimated scores are only accurate in high density regions.

Estimated scores are accurate everywhere for noise perturbed data 

Original p(x)

Noisy pβ(x′ )

x′ = x + βz
Q: how to choose an appropriate noise scale  for the perturbation?   β

Large noise: cover the low-density regions well, but different from the original distribution 

Small noise: similar to the original distribution, but does not cover low-density regions well



Noise Perturbed Score-Matching 
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Score-based Generative Models

Annealing:  using multiple noise scales  for the perturbation!   {βt}T
t=1

0 < β1 < β2 < ⋯ < βTxt = x + βtz

pβt
(xt) = ∫ p(x)N(xt |x, β2

t )dx



Noise Perturbed Score-Matching 
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Score-based Generative Models

Annealing:  using multiple noise scales  for the perturbation!   {βt}T
t=1

0 < β1 < β2 < ⋯ < βTxt = x + βtz

pβt
(xt) = ∫ p(x)N(xt |x, β2

t )dx

Using neural network to estimate the score  of each noise-perturbed distribution ∇xt
log pβt

(xt) pβt
(xt)

Noise Conditional Score Network (NCSN) Song 2019

sθ(xt, t) ≈ ∇xt
log pβt

(xt) ∀t

Loss function:
T

∑
t=1

λtEpβt(xt)∥∇xt
log pβt

(xt) − sθ(xt, t)∥2

Estimated Score True Score



Noise Perturbed Score-Matching 
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Score-based Generative Models

Annealing:  using multiple noise scales  for the perturbation!   {βt}T
t=1

0 < β1 < β2 < ⋯ < βTxt = x + βtz

sθ(xt, t) ≈ ∇xt
log pβt

(xt) ∀t

T

∑
t=1

λtEpβt(xt)∥∇xt
log pβt

(xt) − sθ(xt, t)∥2

β1 β2 β3

samples of  xt

estimated  
scores

Figure credit to Yang Song



A Big Picture
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Score-based Generative Models
xt = x0 + βtzt

Forward Process

0 < β1 < β2 < ⋯ < βT
A sequence of noise levels



A Big Picture
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Score-based Generative Models
xt = x0 + βtzt

Forward Process xk
t−1 = xk

t + αt ∇xt
log pβt

(xt)+ 2αtzk
t

Approximated by neural network 
 sθ(xt, t)

Reverse Process

Reverse it!

Score function

0 < β1 < β2 < ⋯ < βT
A sequence of noise levels

Annealed Langevin dynamics



Connection to demising diffusion probabilistic models (DDPM)
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Score-based Generative Models

The forward noise  is estimated by  
a denoting network 

ϵt
ϵθ(xt, t)

α1 > α2 > ⋯ > αT > 0

DDPM loss:

LSM = Et,x,xt
∥∇xt

log p(xt) − sθ(xt, t)∥2

sθ(xt, t) = −
1

1 − ᾱt

ϵθ(xt, t)

Score Matching Loss

After some scaling

Score Estimation of  ∇xt
log p(xt)



QCS-SGM: Quantized CS with SGM
Our solution: QCS-SGM
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Our solution: QCS-SGM

xt−1 = xt + αt[∇xt
log p(xt) + ∇xt

log p(y |xt)] + 2αtzt

From diffusion models From quantized measurementsSamples

Iterative Sampling 
Equation

Intractable! 
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QCS-SGM: Quantized CS with SGM



Our solution: QCS-SGM
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QCS-SGM: Quantized CS with SGM

Perturbed signal Original signal Reverse transition probability

Using the Bayes’ rule: Tractable (Gaussian) unknown

Note: The result is intractable even for linear model  y = Ax0 + n



• Assumption 1

p(x0 |xt) ∝ p(xt |x0)

The prior               is non-informative w.r.t. p(xt |x0)p(x0)

Asymptotically accurate when the perturbed noise is negligible

Two Assumptions of QCS-SGM
QCS-SGM: Quantized CS with SGM



• Assumption 1

AAT = Diagonal matrix

(Approximately) satisfied by many popular CS matrices 
 e.g., DFT, DCT, Hadamard,  and random Gaussian matrices, etc. 

Asymptotically accurate when the perturbed noise is negligible

The sensing matrix A is row-orthogonal, i.e., 

Two Assumptions of QCS-SGM
QCS-SGM: Quantized CS with SGM

• Assumption 2

The prior               is non-informative w.r.t. p(xt |x0)p(x0)

p(x0 |xt) ∝ p(xt |x0)



G(βt, y, A, xt) = [g1, g2, . . . , gM]T ∈ ℝM×1
where

gm =
exp (−

ũ2
ym

2 ) − exp (−
l̃2

ym

2 )
σ2 + β2

t aT
m

2

2
∫ ũym

l̃ym
exp (− t2

2 )dt

ũym
=

aT
mxt − uym

σ2 + β2
t aT

m
2

2

l̃ym
=

aT
mxt − lym

σ2 + β2
t aT

m
2

2

∇xt
log p(y ∣ xt) = ATG(βt, y, A, xt)

• Corollary: In the special case of linear case y=Ax + n 

∇xt
log p(y ∣ xt) = AT(σ2I + β2

t AAT)−1 (y − Axt)
✓Explain the necessity of annealing term in Jalal et al. (2021a) 

✓Extend and improve Jalal et al. (2021a) in the general case

• Theorem 1: Under assumptions 1 and 2, we obtain a closed-form solution to the likelihood score

Results of Pseudo-likelihood Score
QCS-SGM: Quantized CS with SGM

∇xt
log p(y ∣ xt) =

AT (y − Axt)
σ2+γ2

t



Only this term is different 
from SGM！

QCS-SGM: Quantized CS with SGM
Resultant Algorithm 

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Quantized Compressed Sensing with Score-Based Generative Models."  
arXiv preprint arXiv:2211.13006 (2022). ICLR 2023 

Code:  https://github.com/mengxiangming/QCS-SGM



Experimental Results
1-bit CS on CelebA 64 × 64  1-bit CS on MNIST 28 × 28 

The proposed QCS-SGM achieves remarkably better performances

Ground Truth

Our Method

34

QCS-SGM: Quantized CS with SGM



Experimental Results
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QCS-SGM: Quantized CS with SGM

Results of QCS-SGM on CelebA
 in the fixed budget case

 (Q×M = 12288)



Experimental Results
FFHQ 256 × 256  high-resolution images

M =
1
8

N

The proposed QCS-SGM can even accurately recover high-resolution image  
from only a few low-resolution (1,2,3-bit) quantized measurements

M
N

=
1
8

≪ 1Compression Ratio
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QCS-SGM: Quantized CS with SGM



Experimental Results
Comparison with Jalal et in the special linear case on MNIST

The proposed QCS-SGM outperforms the Jalal et al for general matrices
37

QCS-SGM: Quantized CS with SGM

M = 200, σ = 0.05 and the condition number of matrix A is cond(A) = 1000



Limitation of QCS-SGM

QCS-SGM is limited to  
(approximately) row-orthogonal matrices A

Why?  The pseudo-likelihood is otherwise intractable

Intractable integration

QCS-SGM+: Improved Quantized CS with SGM



A New Perspective

Likelihood PriorPartition Function (normalization term)

pseudo-likelihood

The pseudo-likelihood can be viewed as the partition function of random variables ñt

One fundamental 
Problem in Bayesian 

Inference

QCS-SGM+: Improved Quantized CS with SGM



A New Perspective

Likelihood PriorPartition Function (normalization term)

pseudo-likelihood

The pseudo-likelihood can be viewed as the partition function of random variables ñt

One fundamental 
Problem in Bayesian 

Inference

Resort to the famous expectation propagation (EP)

QCS-SGM+: Improved Quantized CS with SGM



QCS-SGM+

Running EP to approximate 
 the pseudo-likelihood 

QCS-SGM+: Improved Quantized CS with SGM

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "QCM-SGM+: Improved Quantized Compressed Sensing With Score-Based  
Generative Models." arXiv preprint arXiv:2302.00919v2 (2023) 

Code:  https://github.com/mengxiangming/QCS-SGM-plus



Experimental Results
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(a) ill-conditioned matrices
• General Matrices

(b) correlated matrices

The (i, j) th element of both R1 and R2  is   and   is termed the correlation coefficientρ|i−j| ρ

QCS-SGM+: Improved Quantized CS with SGM



Experimental Results
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QCS-SGM+: Improved Quantized CS with SGM

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods.

1-bit CS on MNIST and CelebA for ill-conditioned A (  for MNIST and  for CelebA)κ = 103 κ = 106



Experimental Results
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QCS-SGM+: Improved Quantized CS with SGM

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods.



Experimental Results
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QCS-SGM+: Improved Quantized CS with SGM

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods.



Experimental Results
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QCS-SGM+: Improved Quantized CS with SGM

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM.

1-bit CS on CelebA for ill-conditioned A (  for CelebA),  κ = 106 M = 4000 ≪ N, σ = 0.1



 Summary
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Brief Summary

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Quantized Compressed Sensing with Score-Based Generative Models."  
arXiv preprint arXiv:2211.13006 (2022). ICLR 2023 
Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "QCM-SGM+: Improved Quantized Compressed Sensing With Score-Based  
Generative Models." arXiv preprint arXiv:2302.00919v2 (2023) 

Code:  https://github.com/mengxiangming/QCS-SGM 
Code:  https://github.com/mengxiangming/QCS-SGM-plus

We proposed QCS-SGM, one quantized CS algorithm using score-based models (diffusion models), as 
well as an advanced variant QCS-SGM+ for general sensing matrices. 

Personal Page (个⼈主页)：https://mengxiangming.github.io/

https://github.com/mengxiangming/QCS-SGM
https://github.com/mengxiangming/QCS-SGM-plus


Thank you! 
Q&A


