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Background
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Statistical Physics Planet A

Information theory Planet B Computer Science Planet C

Hi, I study disordered
systems in statistical 
physics.

Hi, I study coding and 
compressed sensing. Hi, I study machine 

learning.

A:er a long 2me discuss2on, it turns out that
they are studying similar problems using different langurages

p 3 little princes from 3 planets
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p Communication

6

Claude Elwood Shannon 
(1916-2001)

“The fundamental problem of communication is that of 
reproducing at one point either exactly or 
approximately a message selected at another point”

—Shannon (1948) 

Figure copied from “A Mathema4cal 
Theory of Communica4on”

X (Unknown singal ) Y(known observa6ons)

X=?
noise
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Claude Elwood Shannon 
(1916-2001)

“The fundamental problem of communica7on is that of 
reproducing at one point either exactly or 
approximately a message selected at another point”

—Shannon (1948) 

Figure copied from “A Mathema4cal 
Theory of Communica4on”

• Q1: How to quantize information?
Entropy

• Q2: What is the capacity of a communication system?
Shannon Formula: C = W*log(1+S/N)  maxmimum rate

• Q3: How to approach the capacity?
Channel coding (Turbo code, LDPC code, Polar code in 5G)

'You should call it entropy, for two
reasons. In the first place your
uncertainty func8on has been used
in sta8s8cal mechanics under that
name, so it already has a name. In
the second place, and more
important, no one really knows
what entropy really is, so in a
debate you will always have the
advantage.'

—John von Neumann

X (Unknown singal ) Y(known observa6ons)

X=?
noise
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Tokye Ins*tote of TechnalogyReceived 
Message y

?
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Tokye Ins*tote of Technalogy

Tokyo Institute of Technology

Received 
Message y

Corrected 
Message x
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Tokye Ins*tote of Technalogy

Tokyo Ins*tute of Technology

Received 
Message y

Corrected 
Message x

noisy
channel Coding

what is x given 
observations y?

x = ?
Adding structure 10

Decoding

constraint function

There is structure within the transmitted codes. 



Background
p Compressed Sensing

11This slide is copy from h>ps://www.raeng.org.uk/publicaFons/other/candes-presentaFon-fronFers-of-engineering

• Massive data acuisition
• Most of the data is reduntant
• Wasteful meaurements

• Could we acqure images using
less/efficient measurements?



Background
p Compressed Sensing

12This slide is copy from https://www.raeng.org.uk/publications/other/candes-presentation-frontiers-of-engineering

• Massive data acuisition
• Most of the data is reduntant
• Wasteful meaurements

• Could we acqure images using
less/efficient measurements?

X (Unknown image)

Y(known observa6ons) X=?
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Unknown Signal Known ObservaIons

what is x? 

transforma6ons
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p Bayesian Perspective 
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Unknown Signal Known Observations

Thomas Bayes (1702-1761)

evidence
(partition 

function)

Posterior distribution

Prior distribution 

likelihood distribution

Bayes' rule

likelihood distribution
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p Bayesian Perspective 
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Unknown Signal Known ObservaIons

Thomas Bayes (1702-1761)

evidence
(partition 

function)

Prior distribution 

Bayes' rule

p Goal 

marginal distribution

posterior mean

likelihood distribution

Posterior distribution

i = 1,..., N
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Unknown Signal Known ObservaIons

Thomas Bayes (1702-1761)

evidence
(partition 

function)

Prior distribution 

Bayes' rule

p Goal 

marginal distribution

posterior mean

Curse of 
Dimen6onality!

e.g., N spins, O(2^N) 

We have to resort to approximate Bayesin Inference methods

likelihood distribution

Posterior distribution
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• A Unified EP Perspective on AMP and its extensions

• Conclusion
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p Two Common Approaches of Approximate Inference 
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Variational Inference
Sampling Methods

Sampling Methodvs.

• Deterministic

• Biased

• Scalable

• Stochastic 

• Unbiased

• Non-scalable

Variational Inference



p Basic Principle
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To approxmate complicated target distribtuion
p with a simple distribution q as close to p as possible

Variational Inference

q ≈ p



p Basic Principle
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To approxmate complicated target distribtuion
p with a simple distribu6on q as close to p as possible

“distance”

KL divergence

Optimization problem

Variational Inference

q ≈ p



p Basic Principle
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q∗ = argmin
"∈$

𝐾𝐿(𝑞(𝐱)||p(x|𝐲) )

Optimization problem

𝐾𝐿(𝑞||p) =0
%

𝑞(x) log
𝑞(x)
𝑝(x)

“distance”

KL divergence

To approxmate complicated target distribtuion
p with a simple distribution q as close to p as possible

• Non-nega6vity of KL
KL(p||q) >=0 and KL(p||q) =0  if and only if p = q

• Non-symmetry of KL
KL(p||q) is not equal to KL(q||p) 

“Gibbs inequality”

qseudo distance 

Variational Inference

q ≈ p



p Basic Principle
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𝐾𝐿(𝑞||p) =0
%

𝑞(x) log
𝑞(x)
𝑝(x)

• KL divergence

≠
figure copied from [Bishop06]

Variational Inference



figure copied from [Bishop06]

p Basic Principle
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𝐾𝐿(𝑞||p) =0
%

𝑞(x) log
𝑞(x)
𝑝(x)

• KL divergence

To calculate the KL divergence, we must know the target distribu6on 
in adance, which is our primary goal!

≠
dilemma! 

goal 

Remember that VI uses KL(q||p)

Variational Inference



p ELBO bound
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𝐾𝐿(𝑞(𝐱)||p(x|𝐲) ) =0
%

𝑞 𝐱 log
𝑞 𝐱

p(x|𝐲)
=0

%

𝑞 𝐱 log
𝑞 𝐱 p(𝐲)

p(x,𝐲)

= ∑% 𝑞 𝐱 log 𝑞 𝐱 − ∑% 𝑞 𝐱 log p(x,𝐲) + log p(𝐲)

Bayes' Rule

Expansion 

≥0 “Gibbs inequality”

Variational Inference



p ELBO bound
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𝐾𝐿(𝑞(𝐱)||p(x|𝐲) ) =0
%

𝑞 𝐱 log
𝑞 𝐱

p(x|𝐲)
=0

%

𝑞 𝐱 log
𝑞 𝐱 p(𝐲)

p(x,𝐲)

= ∑% 𝑞 𝐱 log 𝑞 𝐱 − ∑% 𝑞 𝐱 log p(x,𝐲) + log p(𝐲)

Bayes' Rule

Expansion 

Log 
Partition function

Evidence Lower Bound (ELBO) 

“Gibbs inequality”≥0

≥

Variational Inference



p ELBO bound

26

𝐾𝐿(𝑞(𝐱)||p(x|𝐲) ) =0
%

𝑞 𝐱 log
𝑞 𝐱

p(x|𝐲)
=0

%

𝑞 𝐱 log
𝑞 𝐱 p(𝐲)

p(x,𝐲)

= ∑% 𝑞 𝐱 log 𝑞 𝐱 − ∑% 𝑞 𝐱 log p(x,𝐲) + log p(𝐲)

Bayes' Rule

Expansion 

Log 
Partition function Evidence Lower Bound (ELBO) 

“Gibbs inequality”≥0

≥

minimize KL = maximize ELBO

Variational Inference



p ELBO bound
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KL minimization ELBO 
maximization

Gibbs
InequalityBayesian 

Inference

Variational
principle 

Inference problem transformed to
optimization problem

Big Picture of VI 

difficult easy

Variational Inference



p Analogy between different planets
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Computer Science Planet

Statisticl physics Planet

free energy
variational 
free energy

evidence 
lower bound

Table modified from 
Table I in [Mehta et al 19] 

Variational Inference



p Why transfroming inference to optimization? 
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max ELBO = ∑!𝑞 𝐱 log p(x,𝐲) − ∑!𝑞 𝐱 log 𝑞 𝐱

l different choice of q
ü structure: mean-field, Bethe, etc. 
ü parametric: Gaussian, nueral network, etc.  

l different optimization methods
ü coordient descent
ü gradient descent
ü stochastic gradient descent
ü natural gradient descent
ü ...... 

Different combinations lead to different inference 
algorithms

There are a bunch of op6miza6on methods we could leverage!

Variational Inference



Mean-filed Approximation
p Mean Field Approximation
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𝑞 𝐱 =7
&

𝑞 𝑥&
Mean Field structure

different variables
are independent

ELBO

="
!

#
"

𝑞 𝑥" log p(x,𝐲) −"
"

𝑞 𝑥" log 𝑞 𝑥"



Mean-filed Approximation
p Mean Field Approximation
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𝑞 𝐱 =7
&

𝑞 𝑥&
Mean Field structure

different variables
are independent

Using coordinate descent optimization, we 
obtain the variational message passing 
(VMP) algorithm:
ü simple to implement
ü closed form updating equation
ü ingore correlations between different 

variables

ELBO

="
!

#
"

𝑞 𝑥" log p(x,𝐲) −"
"

𝑞 𝑥" log 𝑞 𝑥"



ELBO ="
!

"
"!

𝑞 𝐱! log 𝑓! 𝐱! −"
#

𝑞 𝑥# log 𝑞 𝑥#

−"
!

"
"!

𝑞 𝐱! log 𝑞 𝐱! +"
#

(𝑑# − 1) "
$"

𝑞 𝑥# log 𝑞 𝑥#

s.t.

32

𝑞 𝐱 =
∏' 𝑞 𝐱'

∏& 𝑞 𝑥& (!)*
Bethe Approximation pair-wise 

correlations

ELBO with Bethe Approximation

p Bethe approximation/Kikuchi Approximation
Bethe Approximation



ELBO ="
!

"
"!

𝑞 𝐱! log 𝑓! 𝐱! −"
#

𝑞 𝑥# log 𝑞 𝑥#

−"
!

"
"!

𝑞 𝐱! log 𝑞 𝐱! +"
#

(𝑑# − 1) "
$"

𝑞 𝑥# log 𝑞 𝑥#

s.t.
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𝑞 𝐱 =
∏' 𝑞 𝐱'

∏& 𝑞 𝑥& (!)*
Bethe Approximation pair-wise 

correlations

ELBO with Bethe Approximation

Langrange 
Multiplier

Belief Propagation(BP)

𝑚!→#(𝑥#) = (
$!\&"

𝑓! 𝐱! +
'

𝑚'→!(𝑥#)

𝑚#→!(𝑥#) =+
()!

𝑚(→#(𝑥#)Message passing on the 
factor graph

p Bethe approximation/Kikuchi Approximation
Bethe Approximation

[Yedidia et al 02,05]



Belief Propagation
p A Toy Example

QuesIon: How to compute the maginal distribuIon                 ? 

There are 4 random discrete variables, each taking 10 possible values randomly. 
The joint distribution is

34



Belief Propagation
p A Toy Example

Direct Answer：marginalize out all other varibles of the joint distribution

QuesIon: How to compute the maginal distribuIon                 ? 

There are 4 random discrete variables, each taking 10 possible values randomly. 
The joint distribution is

For each combinaIon                     : 3 multiplications

Number of combinaIons                     : 10*10*10 = 103

Number of values of      : 10

Total Number of MulIplicaIons : 10*3*103 =3*104

Total Number of AddiIons : 10*(103 -1)     104

Total Number of MulIplicaIons :

Total Number of AddiIons :

35



Belief Propagation
p A Toy Example

Question: How to compute the maginal distribution                 ? 

There are 4 random discrete variables, each taking 10 possible values randomly. 
The joint distribuIon is

For each combination                     : 3 mulIplicaIons

Number of combinaIons                     : 10*10*10 = 103

Number of values of      : 10

Total Number of Multiplications : 10*3*103 =3*104

Total Number of Additions : 10*(103 -1)     104

The structure of the joint distribu2on is totally ignored!

Total Number of MulIplicaIons :

Total Number of Additions :

36

Direct Answer：marginalize out all other varibles of the joint distribution



Belief Propagation
p A Toy Example

The distribu2ve law 
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Belief Propagation
p A Toy Example

AlternaVve Answer：

The distributive law 

The distribuJve
law

mA(x2) mB(x2) mC(x2)

38



Belief Propagation
p A Toy Example

Alternative Answer：

The distribu2ve law 

The distributive
law

mA(x2) mB(x2)

Total Number of MulIplicaIons : 10*(10+2) = 120 

Total Number of Additions : 10*(9+9+9) = 270

mC(x2)

The original problem 
is divided into 

small sub-problems

39



Belief Propagation
p A Toy Example

1f 2f
3f

1x 2x

3x

4x

Factor graph
- circle nodes represent random variables
- square nodes represent factorizing funcIons
- funcIon node f connects varible node x if and only if x is one of argument of f

1f 2f 3f

40



Belief Propagation
p A Toy Example

1f 2f
3f

1x 2x

3x

4x

Factor graph
- circle nodes represent random variables
- square nodes represent factorizing functions
- function node f connects varible node x if and only if x is one of argument of f

1f 2f 3f

41
Inference process Message Passing on graph



Belief Propagation
p A Toy Example

1f 2f
3f

1x 2x

3x

4x

Factor graph
- circle nodes represent random variables
- square nodes represent factorizing functions
- function node f connects varible node x if and only if x is one of argument of f

1f 2f 3f
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Belief Propagation
p A Toy Example

1f 2f
3f

1x 2x

3x

4x

Factor graph
- circle nodes represent random variables
- square nodes represent factorizing functions
- function node f connects varible node x if and only if x is one of argument of f

1f 2f 3f
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Belief Propagation
p A Toy Example

1f 2f
3f

1x 2x

3x

4x

Factor graph
- circle nodes represent random variables
- square nodes represent factorizing functions
- function node f connects varible node x if and only if x is one of argument of f

1f 2f 3f
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Belief Propagation
p A Toy Example

1f 2f
3f

1x 2x

3x

4x

Factor graph
- circle nodes represent random variables
- square nodes represent factorizing functions
- function node f connects varible node x if and only if x is one of argument of f

1f 2f 3f

45



Belief Propagation
p A Toy Example

1f 2f
3f

1x 2x

3x

4x

Factor graph
- circle nodes represent random variables
- square nodes represent factorizing functions
- function node f connects varible node x if and only if x is one of argument of f

1f 2f 3f
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product of all 
incoming 
messages



Belief Propagation
p Factor Graph

local message 
passing

afix

Loopy Blief Propaga6on (LBP)

Factor to variable

Variable to factor

47

BP on 
general graph 



Belief Propagation
p Factor Graph

local message 
passing

afix

Loopy Blief Propaga6on (LBP)

Factor to variable

Variable to factor
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BP on 
general graph 



Belief Propagation
p Factor Graph

local message 
passing

afix

Loopy Blief Propaga6on (LBP)

Factor to variable

Variable to factor
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BP on 
general graph 



Belief Propagation
p Factor Graph

local message 
passing

afix

Loopy Blief Propagation (LBP)

Factor to variable

Variable to factor
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BP on 
general graph 



Belief Propagation
p Factor Graph

local message 
passing

afix

Loopy Blief Propagation (LBP)

Factor to variable

Variable to factor Excluding incomming 
message itself

51

BP on 
general graph 



Belief Propagation
p Factor Graph

local message 
passing

afix

Loopy Blief Propaga6on (LBP)

Factor to variable

Variable to factor

Iterations
(graph with loops)

Excluding incomming 
message itself

52

BP on 
general graph 

BP is exact for
graph without loops!



Belief Propagation

Message passing is a beau2ful algorithmic framework to 
tackle difficult problems using divide and conquer

by local compua2on and informa2on sharing

figure copied from hKp://computerrobotvision.org/2009/tutorial_day/crv09_belief_propaga8on_v2.pdf
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Parametric Approximation
p Parameterization

54

𝑞 𝐱 ≡ 𝑞(𝐱;𝝓)Parameterization

• Exponential family 𝑞 𝐱;𝝓 = 𝐞𝐱𝐩 𝝓, 𝜼 𝐱 − 𝑨 𝝓 E.g.,  Gaussian, Bernoulli, exponential...

• Deep nueral network, such as that used in vatiational auto-encoder (VAE)



Parametric Approximation
p Parameterization
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𝑞 𝐱 ≡ 𝑞(𝐱;𝝓)Parameterization

max
𝝓

ELBO(𝝓) =0
%

𝑞(𝐱;𝝓) log p(x,𝐲) −0
%

𝑞(𝐱;𝝓) log 𝑞(𝐱;𝝓)
New Optimization Obejective 

• Exponential family 𝑞 𝐱;𝝓 = 𝐞𝐱𝐩 𝝓, 𝜼 𝐱 − 𝑨 𝝓 E.g.,  Gaussian, Bernoulli, exponential...

Stochastic variational inference framework 
The variaJonal parameters

are opJmzied usign SGD

• Deep nueral network, such as that used in vatiational auto-encoder (VAE)

[Hoffman et al 2013]



Parametric Approximation
p Parameterization
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𝑞 𝐱 ≡ 𝑞(𝐱;𝝓)Parameterization

max
𝝓

ELBO(𝝓) =0
%

𝑞(𝐱;𝝓) log p(x,𝐲) −0
%

𝑞(𝐱;𝝓) log 𝑞(𝐱;𝝓)
New Optimization Obejective 

• Exponential family 𝑞 𝐱;𝝓 = 𝐞𝐱𝐩 𝝓, 𝜼 𝐱 − 𝑨 𝝓 E.g.,  Gaussian, Bernoulli, exponential...

Stochastic variational inference framework 
The variaJonal parameters

are opJmzied usign SGD

• Deep nueral network, such as that used in vatiational auto-encoder (VAE)

The original integration problem boilds down to derivative 
problem



Outline
• Background 

• Variational Inference

• Expectation Propagation

• A Unified EP Perspective on AMP and its extensions

• Conclusion
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A Toy Problem
p Problem Statement 
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component twocomponent one 

What is the
value of x?

we obtain a sequence of data points 

PDF

This example is modified 
from example in [Minka01b]



ç

A Toy Problem
p Probabilistic Modeling 

59

• prior distribution

After obtaining N observations, the joint distribution could be written as

• posterior distribution

• likelihood distribution

Guassian prior 

We could perform Bayesian inference to compute the posterior distribution

All the codes for this toy example are available: 
hZps://github.com/mengxiangming/ep-demo



A Toy Problem
p Factor Graph and Belief Propagation  

60

The facJr gragh
has no circles: 
exact inference!!

Belief Propagation

factor to vaiable:

vaiable update:

Already Done?



A Toy Problem
p Factor Graph and Belief Propagation  

61

The facJr gragh
has no circles: 
exact inference!!

Belief Propagation

factor to vaiable:

vaiable update:

Already Done?

• The posterior distribution is a mixture of        Gaussians.

• The computational complexity is exponential with N 



A Toy Problem
p The True Posterior    

62



A Toy Problem
p The True Posterior    

63

Approxima)ng the posterior as
one Gaussian distribu)on



A Toy Problem
p A Naive Approximation   

64

Naive Gaussian Message Approximation

factor to vaiable:

vaiable update:

Approxima6ng each BP message itself
as Gaussian distribu6on independently



A Toy Problem
p A Naive Approximation   
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Naive Gaussian Message Approximation

factor to vaiable:

vaiable update:

Approxima6ng each BP message itself
as Gaussian distribu6on independently

Each non-Gaussian
likelihood is approximated 

as a Gaussian factor

True Posterior

Approximate



A Toy Problem
p A Naive Approximation   
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Naive Gaussian Message Approximation

factor to vaiable:

vaiable update:

Approxima6ng each BP message itself
as Gaussian distribu6on independently

The posterior will be also Gaussian due to the product rule of Gaussian

Each non-Gaussian
likelihood is approximated 

as a Gaussian factor

True Posterior

Approximate



A Toy Problem
p A Naive Approximation   

67

Gaussian Approximation

For each non-Gaussian message 

Gassian ProjecVon 
Operator

the two distributions have
same mean and variance



A Toy Problem
p A Naive Approximation   
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Gaussian Approximation

For each non-Gaussian message 

Gassian Projection 
Operator

the two distribuJons have
same mean and variance

equivalent 

Moment Matching
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A Toy Problem
p A Naive Approximation   

69
Then, how will the posterior be like? 

Gaussian Approximation

For each non-Gaussian message 

the two distribuJons have
same mean and variance

equivalent 

Gassian ProjecVon 
Operator

Moment Matching



A Toy Problem
p A Naive Approximation   

70

Why could 
this happen?



A Toy Problem
p A Naive Approximation   

71
çThere is still a big discrepancy between the true posterior and naive 

Gaussian approximation, even when the true postrior approaches Gaussian!

Why could 
this happen?



A Toy Problem
p A Naive Approximation   

72

çBecause it is naive selfish



A Toy Problem
p A Naive Approximation   
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çBecause it is naive selfish

Each factor (message) only cares about itself 
when making approximations 

while forge2ng the ul5mate goal is to make a good 
approxima5on to the global posterior  



A Toy Problem
p An Alternative Gaussian Approximation 

74

Consider the simple case of N = 1 (only one observa9on)

True  posterior

Gauss Non-Gauss

• Step 1: Approxima6ng the product                       as Gaussian



A Toy Problem
p An Alternative Gaussian Approximation 
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Consider the simple case of N = 1 (only one observa9on)

True  posterior

Gauss Non-Gauss

• Step 1: Approxima6ng the product                       as Gaussian

• Step 2: Divide the Gaussian                                    by           to obtain a Gaussian   

taking care of 
when approximating 



A Toy Problem
p An Alternative Gaussian Approximation 
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Consider the simple case of N = 1 (only one observation)

True  posterior

Gauss Non-Gauss

• Step 1: Approximating the product                       as Gaussian

• Step 2: Divide the Gaussian                                    by           to obtain a Gaussian   

taking care of 
when approxima9ng 

Posterior Gauss 
approxima9on 



A Toy Problem
p Assumed Density Filtering (ADF) 

77

Consider general case of N obersvations

True  posterior

Approximate  posterior



A Toy Problem
p Assumed Density Filtering (ADF) 
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Consider general case of N obersvations

True  posterior

Approximate  posterior

• IniBalize
• For each new observaBon  

ADF Algorithm 

Inclusion

ProjecJon

only implicitly 
made



A Toy Problem
p Assumed Density Filtering (ADF) 
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Consider general case of N obersvaVons

True  posterior

Approximate  posterior

ADF is one kind of sequenVal Gaussian
Projector • IniBalize

• For each new observaBon  

ADF Algorithm 

only implicitly 
made

Inclusion

ProjecJon

[Minka01b]



A Toy Problem
p Assumed Density Filtering (ADF)   

80ADF is much better than naive Gauss approximation



A Toy Problem
p Assumed Density Filtering (ADF) 
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However, ADF is sensitive to the order of approximations !

How to avoid the effect of different ordering 



A Toy Problem
p Expectation Propagation  

82

Expecta2on Propaga2on = ADF + Itera2vely Refine



A Toy Problem
p Expectation Propagation  

83

Expecta2on Propaga2on = ADF + Itera2vely Refine

True  posterior

Approximate  posterior

• Initialize
• For iter = 1... Num_iter

EP Algorithm 

division

For i in 1...N

inclusion

projecJon

refinement



EP is an iterative refinement of ADF 
and is not affected by order

A Toy Problem
p Expectation Propagation  

84

Expecta2on Propaga2on = ADF + Itera2vely Refine

True  posterior

Approximate  posterior

• IniValize
• For iter = 1... Num_iter

EP Algorithm 

division

For i in 1...N

inclusion

projecJon

refinement

[Minka01b]



A Toy Problem
p Expectation Propagation   

85EP approximation is close to the true posterior !



A Toy Problem
p Expectation Propagation   
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p Expecta6on Propaga6on (EP) [Minka01] [Opper05]

87

EP as Optimization



p Expectation Propagation (EP) [Minka01] [Opper05]
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EP as Optimization



p Expecta6on Propaga6on (EP) [Minka01] [Opper05]
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• BP minimizes KL(q||p) while EP minimizes KL(p||q) 

• EP can be also implemented as message passing on factor graph

EP as Optimization



EP as Message Passing 
p Factor Graph

28

local message 
passing

afix

Expecta6on Propaga6on

Factor to variable

Variable to factor

Iterations

Excluding incomming 
message itself
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EP vs. BP

Expectation Propagation
Sampling Methods

Belief Propagationvs.

• minimize KL (p||q) 

• A generalization of BP

• Discrete & con2nuous variable

• Might iteraBve without loop 

• EP is related to the cavity method in physics [M ézard et al 87] [Opper&Saad 01]

• minimize KL (q||p)

• EP with fully factorization  

• Dicrete variable  

• Non-iterative without loop



Outline
• Background 

• Variational Inference

• Expectation Propagation

• A Unified EP Perspective on AMP and its extensions

• Conclusion
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Linear Observations
p Problem Statement

93

• The goal is to recover signal x given the observations y.
• A fundamental problem in communica6on, compressed sensing, sta6s6cs



Linear Observations
p Problem Statement

94

First, we write the the joint distribuIon can be wri]en as follows 

Fully-Factorized

Vector-Form

• The goal is to recover signal x given the observations y.
• A fundamental problem in communication, compressed sensing, statistics



Linear Observations
p Fully-Factorized Factor Graph
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Linear Observations
p Fully-Factorized Factor Graph

96

It seems quite
easy ?



p An EP Perspective on AMP

97

where

Linear Observations



p An EP Perspective on AMP

98

where

• However, the number of messages are O(MN), which
is sJll intractable for high-dimensional problems

Still Too 
Complicated!

Linear Observations



• However, the number of messages are O(MN), which
is still intractable for high-dimensional problems

• To reduce the number of messages, neglect the high-
order terms in large system limit.

p An EP Perspective on AMP

99

where

Still Too 
Complicated!

Linear Observations



• However, the number of messages are O(MN), which
is still intractable for high-dimensional problems

• To reduce the number of messages, neglect the high-
order terms in large system limit.

• After some algebra, the number of messages is
reduced to O(M+N) and we obtain AMP

p An EP Perspective on AMP

100

where

Still Too 
Complicated!

X. Meng, S. Wu, L. Kuang, and J. Lu, “An expectaFon propagaFon
perspecFve on approximate message passing,” IEEE Signal Processing
Le>ers, vol. 22, no. 8, pp. 1194-1197, Aug. 2015.

Linear Observations



p An EP Perspective on AMP
Relation to AMP

101

AMP iteratively decouples the original vector inference problem to scalar inference problems

• Comments
ü The first AMP-like method was derived by Kabashima for CDMA detec=on [Kabashima 03] and   later 
derived by Donoho et. al for compressed sensing [DMM09]. 
ü For i.i.d. Gaussian A, AMP is proved to be asympto=cally Bayesian op=mal and rigorously analyzed via 
state evolu=on (SE) [BM11]  
ü For general matrices A, AMP may diverge [BM11] 



p An EP Perspective on AMP
Relation to AMP

102

AMP iteratively decouples the original vector inference problem to scalar inference problems

• Comments
ü The first AMP-like method was derived by Kabashima for CDMA detection [Kabashima 03] and   later 
derived by Donoho et. al for compressed sensing [DMM09]. 
ü For i.i.d. Gaussian A, AMP is proved to be asymptotically Bayesian optimal and rigorously analyzed via 
state evolution (SE) [BM11]  
ü For general matrices A, AMP may diverge [BM11] 
ü Vector AMP (VAMP) converges for right-rotationally invariant matrices [RSF16] 

figure copied from [RSF16]



EP Perspective on VAMP
p Vector-form Factor Graph

103

x( )0p x ( )|p y x

vector-form factor graph

A B



EP Perspective on VAMP
p Vector-form Factor Graph
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x( )0p x ( )|p y x

vector-form factor graph

A B

This is exactly the 
MMSE form of VAMP

[RSF16]



p An EP Perspective on AMP
A Unified Perspective

105

• The EP perspective of AMP and VAMP:
ü Explicitly establishing the relationship between AMP
ü Simplifying the extension of AMP to the complex-valued AMP (simply using circularly-
symmetric Gaussian) [MWKL15b]
ü Providing a unified view of AMP and VAMP (derived from scalar EP [MWKL15a] and
vector EP [RSF16], respectively )

AMP VAMP

BP EP

Scalar 
factor graph

Vector 
factor graphCLT & Taylor

Complex-valued-version

Circularly-symmetric Gaussian



p Background
NonLinear Observations

• The measurements are oYen obtained in a nonlinear way
• one-bit (quan6zed) compressed sensing
• phase retrival
• logis6c regression
• ....

106

NÎx !

linear mixing

M N´ÎA !
MÎy !

Unknown
Signals/parameters

observations

( )0px x!
=z Ax

probabilistic mapping  

( | )a ap y z

Inference on Generalized linear model (GLM)
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Is it possible to transform the nonlinear inference problem 
to linear inference problems?

NonLinear Observations
Basic Idea:



Original Non-linear
Problem

Linear Inference
Problem 
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Is it possible to transform the nonlinear inference problem 
to linear inference problems?

NonLinear Observations
Basic Idea:

transform

A variety of linear
inference algorithms

could be used



p Two Equivalent Factor Graphs of GLM
A Unified Inference Framework for GLM

x( )0p x ( )|p y x ( )0p x x ( )|p y zz( )d -z Ax

109

(a) factor graph of GLM (b) Equivalent factor graph of GLM

Introducing
Auxiliary node z



p Two Equivalent Factor Graphs of GLM
A Unified Inference Framework for GLM

p Decoupling GLM into SLM via EP

( )0p x x ( )|p y zz( )d -z Ax ( )z pm ® z

( )p zm ® z

( ) ( )1 ; ( 1), ( 1)
z p

t ext ext
A Am z t v t I

®

- µ - -z zN

( )
( ) ( )( )

( ) ( )
1

1

Proj |
; ( ), ( )z p

p z

z p

t

t ext ext
B Bt

p m
m z t v t I

m
®

®

®

-
F

-µ µ
y z z

z z
z

N

EP message passing
(t-th iteration) 
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x( )0p x ( )|p y x ( )0p x x ( )|p y zz( )d -z Ax

(a) factor graph of GLM (b) Equivalent factor graph of GLM

Introducing
Auxiliary node z



p Two Equivalent Factor Graphs of GLM
A Unified Inference Framework for GLM

p Decoupling GLM into SLM via EP

( )0p x x ( )|p y zz( )d -z Ax ( )z pm ® z

( )p zm ® z

( ) ( )1 ; ( 1), ( 1)
z p

t ext ext
A Am z t v t I

®

- µ - -z zN

( )
( ) ( )( )

( ) ( )
1

1

Proj |
; ( ), ( )z p

p z

z p

t

t ext ext
B Bt

p m
m z t v t I

m
®

®

®

-
F

-µ µ
y z z

z z
z

N

EP message passing
(t-th iteration) 
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x( )0p x ( )|p y x ( )0p x x ( )|p y zz( )d -z Ax

(a) factor graph of GLM (b) Equivalent factor graph of GLM

Introducing
Auxiliary node z



p Decoupling GLM into SLM via EP 
A Unified Inference Framework for GLM

( )0p x x z( )d -z Ax ( )p zm ® z

Pseudo SLM 

( )|p y z( )z pm ® z

MMSE module B
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p Decoupling GLM into SLM via EP 
A Unified Inference Framework for GLM

( )0p x x z( )d -z Ax ( )p zm ® z

Pseudo SLM 

( )|p y z( )z pm ® z

MMSE module B

• The original GLM is iteratively decoupled into a sequence of simple SLM problems

= +y Ax n!!
2~ (0, )Isn! !N

2( ), ( )ext ext
B Bt v ts= =y z! !

( ), ( )ext ext
B Bt v tz

( 1), ( 1)ext ext
A At v t- -z

Module BModule A

Component-wise
MMSE

E | ,

Var | ,

post ext ext
B A A

post ext ext
B A A

z v

v z v

é ù= ë û
é ù= ë û

z z

z

1 1 1
( ) ( ) ( 1)
( ) ( ) ( 1)
( ) ( ) ( 1)

ext post ext
B B A
ext post ext
B B A
ext post ext
B B A

v t v t v t
t t t

v t v t v t

= -
-

-
= -

-
z z z

1 1 1
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

ext post ext
A A B
ext post ext
A A B
ext post ext
A A B

v t v t v t
t t t

v t v t v t

= -

= -
z z z

Note: The computation of posterior mean
and variance of z in module A may differ
for different SLM inference methods.
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Pseudo Linear Models



p Decoupling GLM into SLM via EP 
A Unified Inference Framework for GLM

( )0p x x z( )d -z Ax ( )p zm ® z

Pseudo SLM 

( )|p y z( )z pm ® z

MMSE module B

• The original GLM is iteratively decoupled into a sequence of simple SLM problems

= +y Ax n!!
2~ (0, )Isn! !N

2( ), ( )ext ext
B Bt v ts= =y z! !

( ), ( )ext ext
B Bt v tz

( 1), ( 1)ext ext
A At v t- -z

Module BModule A

Component-wise
MMSE

E | ,

Var | ,

post ext ext
B A A

post ext ext
B A A

z v

v z v

é ù= ë û
é ù= ë û

z z

z

1 1 1
( ) ( ) ( 1)
( ) ( ) ( 1)
( ) ( ) ( 1)

ext post ext
B B A
ext post ext
B B A
ext post ext
B B A

v t v t v t
t t t

v t v t v t

= -
-

-
= -

-
z z z

1 1 1
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

ext post ext
A A B
ext post ext
A A B
ext post ext
A A B

v t v t v t
t t t

v t v t v t

= -

= -
z z z

Unified Inference Framework for GLM
• Initialization 
• For t = 1: T, Do

1. Perform component-wise MMSE
2. Update 
3. Perform SLM inference one or more      

iterations
4. Compute                      and then 

update

(0), (0)ext ext
A Avz

( ), ( )ext ext
B Bt v tz

( ), ( )post post
A At v tz

( ), ( )ext ext
A At v tz

Note: The computation of posterior mean
and variance of z in module A may differ
for different SLM inference methods.
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[MWZ18] X. Meng, S. Wu and J. Zhu, “A unified Bayesian inference framework for generalized linear model,” 
IEEE Signal Processing Letters, vol. 25, no. 3, Mar. 2018.

Pseudo Linear Models

Universal Algorithm Design [MWZ18]



p From AMP to Gr-AMP
A Unified Inference Framework for GLM

( ), ( )ext ext
B Bt v tz

( 1), ( 1)ext ext
A At v t- -z

Module BModule A

Component-wise
MMSE

AMP
(T0 iterations)

The Gr-AMP Algorithm
• Initialization 
• For t = 1: T, Do

1. Perform component-wise MMSE
2. Update 
3. Perform AMP for T0  iterations
4. Compute                      and then 

update

(0), (0)ext ext
A Avz

( ), ( )ext ext
B Bt v tz

( ), ( )post post
A At v tz

( ), ( )ext ext
A At v tz
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p From AMP to Gr-AMP

A Unified Inference Framework for 
GLM

( ), ( )ext ext
B Bt v tz

( 1), ( 1)ext ext
A At v t- -z

Module BModule A

Component-wise
MMSE

AMP
(T0 iterations)

The Gr-AMP Algorithm
• Initialization 
• For t = 1: T, Do

1. Perform component-wise MMSE
2. Update 
3. Perform AMP for T0  iterations
4. Compute                      and then 

update

(0), (0)ext ext
A Avz

( ), ( )ext ext
B Bt v tz

( ), ( )post post
A At v tz

( ), ( )ext ext
A At v tz

• Relation of Gr-AMP to GAMP
ü Gr-AMP is precisely GAMP when T0 = 1 and thus provides an EP perspective on GAMP

In essance, GAMP first transforms nonlinear model to linear model using EP and then directly 
apply AMP on the linear model in each iteration. 

ü This perspective provides a concise derivation of GAMP using EP as in [MWZ18] 
ü A more flexible message passing schedule: double-loop implementation.
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p From AMP to Gr-AMP
A Unified Inference Framework for GLM

( ), ( )ext ext
B Bt v tz

( 1), ( 1)ext ext
A At v t- -z

Module BModule A

Component-wise
MMSE

AMP
(T0 iterations)

The Gr-AMP Algorithm
• Initialization 
• For t = 1: T, Do

1. Perform component-wise MMSE
2. Update 
3. Perform AMP for T0  iterations
4. Compute                      and then 

update

(0), (0)ext ext
A Avz

( ), ( )ext ext
B Bt v tz

( ), ( )post post
A At v tz

( ), ( )ext ext
A At v tz

• Relation of Gr-AMP to GAMP
ü Gr-AMP is precisely GAMP when T0 = 1 and thus provides an EP perspective on GAMP

In essance, GAMP first transforms nonlinear model to linear model using EP and then directly 
apply AMP on the linear model in each iteration. 

ü This perspective provides a concise derivation of GAMP using EP as in [MWZ18] 
ü A more flexible message passing schedule: double-loop implementation.

• Quantized CS for 1,2,3-bit cases: 
N=1024,M=512,SNR=50dB

• Gr-AMP and GAMP converge to the same 
performance for i.i.d. Gaussian A

• Total number iterations of AMP are about the same 
while the number of MMSE operations is reduced 
for Gr-AMP.  
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p From VAMP/SBL to Gr-AMP/Gr-SBL 
A Unified Inference Framework for GLM

( ), ( )ext ext
B Bt v tz

( 1), ( 1)ext ext
A At v t- -z

Module BModule A

Component-wise
MMSE

VAMP/SBL
(T0 iterations)

The Gr-VAMP/Gr-SBL Algorithm
• Initialization 
• For t = 1: T, Do

1. Perform component-wise MMSE
2. Update 
3. Perform VAMP/SBL for T0  iterations
4. Compute                      and then 

update

(0), (0)ext ext
A Avz

( ), ( )ext ext
B Bt v tz

( ), ( )post post
A At v tz

( ), ( )ext ext
A At v tz
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p From VAMP/SBL to Gr-AMP/Gr-SBL
A Unified Inference Framework for GLM

( ), ( )ext ext
B Bt v tz

( 1), ( 1)ext ext
A At v t- -z

Module BModule A

Component-wise
MMSE

VAMP/SBL
(T0 iterations)

The Gr-VAMP/Gr-SBL Algorithm
• Initialization 
• For t = 1: T, Do

1. Perform component-wise MMSE
2. Update 
3. Perform VAMP/SBL for T0  iterations
4. Compute                      and then 

update

(0), (0)ext ext
A Avz

( ), ( )ext ext
B Bt v tz

( ), ( )post post
A At v tz

( ), ( )ext ext
A At v tz

Performance of de-biased NMSE for 1-bit CS
ü N =512,M=2048,SNR=50dB, sparse ratio 0.1

ü T0 = 1 for both Gr-VAMP and Gr-SBL
ü When conditional number is 1, all kinds of
algorithms performs nearly the same.
ü As the condition number increases, the
recovery performances degrade smoothly for
Gr-VAMP/GVAMP/Gr-SBL while both Gr-AMP
and GAMP diverge for even mild condition
number, which show the robustness of Gr-
VAMP/Gr-SBL/GVAMP for general matrices.
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X. Meng, S. Wu and J. Zhu, “A unified Bayesian inference framework for generalized linear model,” IEEE Signal Processing  
Le>ers., vol. 25, no. 3, Mar. 2018.

Code available: https://github.com/mengxiangming/glmcode



Conclusions
• A high-bias low-variance introduction to approximate Bayesian

inference

• An overview of variational inference framewrok

• A tutorial introducition of expection propagation

• A unified EP perspective on AMP and its extensions.
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Thank You

ありがとうございます

Q&A
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