# A High-bias Low-variance Introduction to Approximate Bayesian Inference 

Xiangming Meng<br>Postdoctoral Researcher<br>Approximate Bayesian Inference (ABI) Team<br>RIKEN Center for Advanced Intelligence Project

Oct. 11, 2019
Tokyo Institute of Technology

## Physics Reports

A high-bias, low-variance introduction to Machine Learning for physicists

Pankaj Mehta ${ }^{\text {a }}$, Marin Bukov ${ }^{\text {b,* }}$, Ching-Hao Wang ${ }^{\text {a }}$, Alexandre G.R. Day ${ }^{\text {a }}$,
100 pages ! Clint Richardson ${ }^{\text {a }}$, Charles K. Fisher ${ }^{\text {c }}$, David J. Schwab ${ }^{\text {d }}$

High variance, low-bias model


## Physics Reports

A high-bias, low-variance introduction to Machine Learning for physicists

Pankaj Mehta ${ }^{\text {a }}$, Marin Bukov ${ }^{\text {b,* }}$, Ching-Hao Wang ${ }^{\text {a }}$, Alexandre G.R. Day ${ }^{\text {a }}$, Clint Richardson ${ }^{\text {a }}$, Charles K. Fisher ${ }^{\text {c }}$, David J. Schwab ${ }^{\text {d }}$

High variance, low-bias model


Limitation of my knowledge

## Outline

- Background
- Variational Inference
- Expectation Propagation
- A Unified EP Perspective on AMP and its extensions
- Conclusion


## Backaround

- 3 little princes from 3 planets


## $\mathrm{Hi}, \mathrm{I}$ study coding and compressed sensing.

Hi, I study machine learning.

Statistical Physics Planet À
$---------\infty$


## Background

## - Communication

"The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point"
-Shannon (1948)


Claude Elwood Shannon (1916-2001)

Fig 1. Schematic diagram of a general communication system

## Background

## - Communication

"The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point"
-Shannon (1948)


Fig 1. Schematic diagram of a general communication system

- Q1: How to quantize information?

Entropy $\quad H=-\sum_{k} p_{k} \log p_{k}$

- Q2: What is the capacity of a communication system?

Shannon Formula: $\mathbf{C}=\mathbf{W}^{*} \log (1+\mathrm{S} / \mathrm{N})$ maxmimum rate

- Q3: How to approach the capacity?

Channel coding (Turbo code, LDPC code, Polar code in 5G)


Claude Elwood Shannon (1916-2001)
'You should call it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, no one really knows what entropy really is, so in a debate you will always have the advantage.'
-John von Neumann

## Background

## - Communication

## Received Message y <br> Tokye Institote of Technalogy

## Background

## - Communication

## Received Message y <br> Tokye Institote of Technalogy

Corrected Message x Tokyo Institute of Technology

## Background

## - Communication

## Received Message y

Corrected Message x

## Tokye Institote of Technalogy

## Tokyo Institute of Technology

There is structure within the transmitted codes.


## Background

## - Compressed Sensing



Raw: 15MB


JPEG: 150KB

- Massive data acuisition
- Most of the data is reduntant
- Wasteful meaurements
- Could we acqure images using less/efficient measurements?


## Background

## - Compressed Sensing



Raw: 15MB


JPEG: 150KB

- Massive data acuisition
- Most of the data is reduntant
- Wasteful meaurements
- Could we acqure images using less/efficient measurements?



## Background

## - Bayesian Perspective



## Background



## Background

## - Bayesian Perspective

Prior distribution $\mathbf{x} \sim p(\mathbf{x})$ Unknown Signal
likelihood distribution


Kngwn Observations

$$
\begin{array}{lr}
p(\mathbf{x} \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{y})} & \text { Bayes' rule } \\
\mathbf{Z} \triangleq p(\mathbf{y})=\sum_{\mathbf{x}} p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) & \begin{array}{c}
\text { evidence } \\
\text { (partition } \\
\text { function) }
\end{array}
\end{array}
$$

- Goal
marginal distribution $p\left(x_{i} \mid \mathbf{y}\right)=\sum_{x_{j} \neq x_{i}} p(\mathbf{x} \mid \mathbf{y})$

$$
i=1, \ldots, N
$$

posterior mean $\quad \hat{x}_{i}=E\left(x_{i} \mid \mathbf{y}\right)=\sum_{x_{i}} x_{i} p\left(x_{i} \mid \mathbf{y}\right)$

## Background

## - Bayesian Perspective

Prior distribution $\mathbf{x} \sim p(\mathbf{x})$ Unknown Signal
$\qquad$


$$
p(\mathbf{y} \mid \mathbf{x})
$$



Known Observations

Thomas Bayes (1702-1761)

$$
\begin{array}{lr}
p(\mathbf{x} \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{y})} & \text { Bayes' rule } \\
\mathbf{Z} \triangleq p(\mathbf{y})=\sum_{\mathbf{x}} p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x}) & \begin{array}{c}
\text { evidence } \\
\text { (partition } \\
\text { function) }
\end{array}
\end{array}
$$

- Goal
marginal distribution $p\left(x_{i} \mid \mathbf{y}\right)=\sum_{x_{j} \neq x_{i}} p(\mathbf{x} \mid \mathbf{y})$
posterior mean

$$
\hat{x}_{i}=E\left(x_{i} \mid \mathbf{y}\right)=\sum_{x_{i}} x_{i} p\left(x_{i} \mid \mathbf{y}\right)
$$


e.g., $N$ spins, $O\left(2^{\wedge} N\right)$

We have to resort to approximate Bayesin Inference methods

## Outline

- Background
- Variational Inference
- Expectation Propagation
- A Unified EP Perspective on AMP and its extensions
- Conclusion


## Variational Inference

- Two Common Approaches of Approximate Inference

- Stochastic
- Unbiased
- Non-scalable


## Variational Inference

## - Basic Principle



To approxmate complicated target distribtuion
$p$ with a simple distribution $q$ as close to $p$ as possible
$q \approx p$

## Variational Inference

## - Basic Principle



Optimization problem $q^{*}=\arg \min _{q \in Q} K L(q(\mathbf{x}) \| p(\mathbf{x} \mid \mathbf{y}))$
KL divergence
"distance"

$$
K L(q \| p)=\sum_{\mathrm{x}} q(\mathrm{x}) \log \frac{q(\mathrm{x})}{p(\mathrm{x})}
$$

## Variational Inference

## - Basic Principle



$$
; \min _{q \in Q} K L(q(\mathbf{x}) \| p(\mathbf{x} \mid \mathbf{y}))
$$

To approxmate complicated target distribtuion
$p$ with a simple distribution $q$ as close to $p$ as possible $q(\mathrm{x}) \log \frac{q(\mathrm{x})}{p(\mathrm{x})}$


Optimization problem
KL divergence
"distance"

- Non-negativity of KL
$K L(p|\mid q)>=0$ and $K L(p|\mid q)=0$ if and only if $p=q$

"Gibbs inequality"
- Non-symmetry of KL $K L(p|\mid q)$ is not equal to $K L(q|\mid p)$



## Variational Inference

## - Basic Principle

- KL divergence

$$
K L(q \| p)=\sum q(\mathrm{x}) \log \frac{q(\mathrm{x})}{p(\mathrm{x})}
$$



figure copied from [Bishop06]

## Variational Inference

## - Basic Principle

- KL divergence

$$
K L(q \| p)=\sum_{q(x)} \log \frac{q(x)}{p(x)}
$$



Remember that VI uses $K L(q \| p)$

To calculate the KL divergence, we must know the target distribution in adance, which is our primary goal!

## Variational Inference

## - ELBO bound

$$
\begin{aligned}
K L(q(\mathbf{x}) \| p(\mathbf{x} \mid \mathbf{y})) & =\sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x} \mid \mathbf{y})}=\sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x}) p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} \quad \text { Bayes' Rule } \\
& =\sum_{\mathbf{x}} q(\mathbf{x}) \log q(\mathbf{x})-\sum_{\mathrm{x}} q(\mathbf{x}) \log p(\mathbf{x}, \mathbf{y})+\log p(\mathbf{y}) \quad \text { Expansion } \\
& \geq \mathbf{0} \quad \text { "Gibbs inequality" }
\end{aligned}
$$

## Variational Inference

## - ELBO bound

$$
\begin{aligned}
K L(q(\mathbf{x}) \| p(\mathbf{x} \mid \mathbf{y})) & =\sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x} \mid \mathbf{y})}=\sum_{\mathrm{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x}) p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} \quad \text { Bayes' Rule } \\
& =\sum_{\mathrm{x}} q(\mathbf{x}) \log q(\mathbf{x})-\sum_{\mathrm{x}} q(\mathbf{x}) \log p(\mathbf{x}, \mathbf{y})+\log p(\mathbf{y}) \quad \text { Expansion } \\
& \geq \mathbf{0} \quad \text { "Gibbs inequality" }
\end{aligned}
$$



## Variational Inference

## - ELBO bound

$$
\begin{aligned}
K L(q(\mathbf{x}) \| p(\mathbf{x} \mid \mathbf{y})) & =\sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x} \mid \mathbf{y})}=\sum_{\mathbf{x}} q(\mathbf{x}) \log \frac{q(\mathbf{x}) p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} \quad \text { Bayes' Rule } \\
& =\sum_{\mathrm{x}} q(\mathbf{x}) \log q(\mathbf{x})-\sum_{\mathrm{x}} q(\mathbf{x}) \log p(\mathbf{x}, \mathbf{y})+\log p(\mathbf{y}) \quad \text { Expansion } \\
& \geq \mathbf{0} \quad \text { "Gibbs inequality" }
\end{aligned}
$$


minimize KL = maximize ELBO

## Variational Inference

## - ELBO bound

Big Picture of VI


## Variational Inference

## - Analogy between different planets

## Computer Science Planet

$$
p(\mathbf{x} \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{y})}
$$

evidence
$\begin{aligned} & \text { lower bound } \\ & \text { evidence }\end{aligned} \mathrm{ELB} \triangleq\langle\log p(\mathbf{x}, \mathbf{y})\rangle_{q}+H(q(\mathbf{x})) \leq \log p(\mathbf{y})$

Statisticl physics Planet

$$
p(\mathbf{s} \mid \beta, J)=\frac{e^{-\beta E(\mathbf{s}, J)}}{Z(\beta, J)}
$$

free energy
variational
free energy

$$
\beta F_{q}(\mathbf{J}) \triangleq \beta\langle E(\mathbf{s}, J)\rangle_{q}-H(q(\mathbf{s})) \geq-\log Z(\beta, J)
$$

## Statistical Physics Computer Science/Information Theory

Spins/dgrees of freedom $s$
Couplings/quenched disorder $\mathbf{J}$
Boltzmann factor $e^{-\beta E(\mathbf{s}, J)}$
Partition function $Z(\beta, J)$
Energy $\beta E(\mathbf{s}, J)$
Free Energy - $\log Z(\beta, J)$
Variational distribution $q(\mathbf{s})$
Variational free energy $\beta F_{q}(\mathbf{J})$

Hidden variables/signal of interest $\mathbf{x}$
Data observations y
Joint distribution $p(\mathbf{x}, \mathbf{y})$
Evidence $p(\mathbf{y})$
Negative $\log$-joint distribution $-\log p(\mathbf{x}, \mathbf{y})$
Negative $\log$ evidence $-\log p(\mathbf{y})$
Variational distribution $q(\mathbf{x} \mid \mathbf{y})$
Negative ELBO -ELBO

## Variational Inference

$\square$ Why transfroming inference to optimization?

$$
\max E L B O=\sum_{\mathrm{x}} q(\mathbf{x}) \log p(\mathbf{x}, \mathbf{y})-\sum_{\mathrm{x}} q(\mathbf{x}) \log q(\mathbf{x})
$$

There are a bunch of optimization methods we could leverage!

- different choice of $q$
$\checkmark$ structure: mean-field, Bethe, etc.
$\checkmark$ parametric: Gaussian, nueral network, etc.
- different optimization methods
$\checkmark$ coordient descent
$\checkmark$ gradient descent
$\checkmark$ stochastic gradient descent
$\checkmark$ natural gradient descent
$\checkmark$......


## Different combinations lead to different inference algorithms

## Mean-filed Approximation

## - Mean Field Approximation

$$
\max \text { ELBO }=\sum_{\mathrm{x}} q(\mathrm{x}) \log p(\mathrm{x}, \mathrm{y})-\sum_{\mathrm{x}} q(\mathrm{x}) \log q(\mathrm{x})
$$

Mean Field structure

$$
q(\mathbf{x})=\prod_{i} q\left(x_{i}\right)
$$

different variables are independent

$$
\begin{aligned}
& \text { ELBO } \\
& =\sum_{\mathbf{x}} \prod_{i} q\left(x_{i}\right) \log p(\mathbf{x}, \mathbf{y})-\sum_{i} q\left(x_{i}\right) \log q\left(x_{i}\right)
\end{aligned}
$$

## Mean-filed Approximation

## - Mean Field Approximation

$$
\max \text { ELBO }=\sum_{\mathrm{x}} q(\mathrm{x}) \log p(\mathrm{x}, \mathrm{y})-\sum_{\mathrm{x}} q(\mathrm{x}) \log q(\mathrm{x})
$$

Mean Field structure

$$
q(\mathbf{x})=\prod_{i} q\left(x_{i}\right)
$$

different variables are independent

Using coordinate descent optimization, we obtain the variational message passing (VMP) algorithm:

$$
\begin{aligned}
& \text { ELBO } \\
& =\sum_{\mathbf{x}} \prod_{i} q\left(x_{i}\right) \log p(\mathbf{x}, \mathbf{y})-\sum_{i} q\left(x_{i}\right) \log q\left(x_{i}\right)
\end{aligned}
$$

Input: A model $p(\mathbf{x}, \mathbf{y})$, a dataset
Output: ${ }^{\prime} q(\mathbf{x})=\prod_{i} q\left(x_{i}\right)$
1: Initialize variational factors $q(\mathbf{x})$
2: while the ELBO has not converged do
3: $\quad$ for $i \in 1,2, \cdots, d$ do
4: $\quad q\left(x_{i}\right) \propto \exp \left\{\mathbb{E}_{\Pi_{j \neq i} q\left(x_{j}\right)}[\log p(\mathbf{x}, \mathbf{y})]\right\}$
5: end for
6: Compute ELBO
7: end while

## Bethe Approximation

## $\square$ Bethe approximation/Kikuchi Approximation

$$
\max \text { ELBO }=\sum_{\mathrm{x}} q(\mathrm{x}) \log p(\mathrm{x}, \mathrm{y})-\sum_{\mathrm{x}} q(\mathrm{x}) \log q(\mathrm{x})
$$

 ELBO with Bethe Approximation

$$
-\sum_{a} \sum_{\mathbf{x}_{\mathbf{a}}} q\left(\mathbf{x}_{a}\right) \log q\left(\mathbf{x}_{a}\right)+\sum_{i}\left(d_{i}-1\right) \sum_{x_{i}} q\left(x_{i}\right) \log q\left(x_{i}\right)
$$

s.t.

## Bethe Approximation

## $\square$ Bethe approximation/Kikuchi Approximation

$$
\max \text { ELBO }=\sum_{\mathrm{x}} q(\mathbf{x}) \log p(\mathbf{x}, \mathrm{y})-\sum_{\mathrm{x}} q(\mathbf{x}) \log q(\mathbf{x})
$$

 ELBO with Bethe Approximation

$$
-\sum_{a} \sum_{\mathrm{x}_{\mathrm{a}}} q\left(\mathbf{x}_{a}\right) \log q\left(\mathbf{x}_{a}\right)+\sum_{i}\left(d_{i}-1\right) \sum_{x_{i}} q\left(x_{i}\right) \log q\left(x_{i}\right)
$$

s.t.

Belief Propagation(BP)

$$
m_{a \rightarrow i}\left(x_{i}\right)=\sum_{\mathrm{x}_{\mathrm{a}} \backslash x_{i}} f_{a}\left(\mathbf{x}_{a}\right) \prod_{j} m_{j \rightarrow a}\left(x_{i}\right)
$$

Langrange
Multiplier

## Belief Propagation

## - A Toy Example

There are 4 random discrete variables, each taking 10 possible values randomly. The joint distribution is

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{2}\right)
$$

Question: How to compute the maginal distribution
$p\left(x_{2}\right)$

## Belief Propagation

## - A Toy Example

There are 4 random discrete variables, each taking 10 possible values randomly.
The joint distribution is

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{2}\right)
$$

Question: How to compute the maginal distribution

$$
p\left(x_{2}\right)
$$

Direct Answer: marginalize out all other varibles of the joint distribution

$$
p\left(x_{2}\right)=\sum_{x_{1}, x_{3} x_{4}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{2}\right)
$$

| Number of values of $x_{2}$ | 10 |
| :--- | :--- |
| For each combination $\quad x_{1}, x_{3}, x_{4}$ | 3 multiplications |
| Number of combinations $\quad x_{1}, x_{3}, x_{4}$ | $10 * 10^{*} 10=10^{3}$ |
| Total Number of Multiplications: | $10 * 3 * 10^{3}=3 * 10^{4}$ |
| Total Number of Additions: | $10 *\left(10^{3}-1\right) \approx 0^{4}$ |

## Belief Propagation

## - A Toy Example

There are 4 random discrete variables, each taking 10 possible values randomly.
The joint distribution is

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{2}\right)
$$

Question: How to compute the maginal distribution $p\left(x_{2}\right)$

Direct Answer: marginalize out all other varibles of the joint distribution

$$
p\left(x_{2}\right)=\sum_{x_{1}, x_{3} x_{4}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{2}\right)
$$

| Number of values of $x_{2}$ | 10 |  |
| :---: | :---: | :---: |
| For each combination $x_{1}, x_{3}, x_{4}$ | 3 multiplications |  |
| Number of combinations $\quad x_{1}, x_{3}, x_{4}$ | $10 * 10 * 10=10^{3}$ | $0\left(10^{4}\right)$ |
| Total Number of Multiplications : | $10 * 3 * 10^{3}=3 * 10^{4}$ |  |
| Total Number of Additions : | $10 *\left(10^{3}-1\right) \approx 10^{4}$ |  |

The structure of the joint distribution is totally ignored!

## Belief Propagation

## - A Toy Example

The distributive law

$$
a b+a c=a(b+c)
$$

## Belief Propagation

## - A Toy Example

The distributive law

$$
a b+a c=a(b+c)
$$

Alternative Answer:

$$
\begin{aligned}
p\left(x_{2}\right) & =\sum_{x_{1}, x_{3} x_{4}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{2}\right) \\
& =\underbrace{\sum_{x_{1}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \sum_{\substack{x_{3}}}^{\sum_{m_{B}\left(\mathbf{x}_{2}\right)}^{\substack{x_{4}}} \mid} p\left(x_{3} \mid x_{2}\right) \sum_{\substack{\text { The distributive } \\
\text { law }}} p\left(x_{4} \mid x_{2}\right)}_{m_{m_{A}}\left(x_{2}\right)}
\end{aligned}
$$

## Belief Propagation

## - A Toy Example

The distributive law

$$
a b+a c=a(b+c)
$$

Alternative Answer:

$$
p\left(x_{2}\right)=\sum p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{2}\right)
$$



Total Number of Multiplications : 10* (10+2) = 120

Total Number of Additions: 10* $(9+9+9)=270$
$\mathcal{O}\left(10^{2}\right)$

## Belief Propagation

## - A Toy Example

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{2}\right)
$$

## Factor graph

$\begin{array}{llll}f_{1} & f_{2} & f_{3} & f_{4}\end{array}$

- circle nodes represent random variables
- square nodes represent factorizing functions
- function node $f$ connects varible node $x$ if and only if $x$ is one of argument of $f$



## Belief Propagation

## - A Toy Example

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{2}\right)
$$

## Factor graph

$$
\begin{array}{llll}
f_{1} & f_{2} & f_{3} & f_{4}
\end{array}
$$

- circle nodes represent random variables
- square nodes represent factorizing functions
- function node $f$ connects varible node $x$ if and only if $x$ is one of argument of $f$


$$
p\left(x_{2}\right)=\sum_{x_{1}} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{2}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right)
$$

## Belief Propagation

## - A Toy Example

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{2}\right)
$$

## Factor graph

$$
\begin{array}{llll}
f_{1} & f_{2} & f_{3} & f_{4}
\end{array}
$$

- circle nodes represent random variables
- square nodes represent factorizing functions
- function node $f$ connects varible node $x$ if and only if $x$ is one of argument of $f$


$$
p\left(x_{2}\right)=\sum_{x_{1}}^{m_{x_{1} \rightarrow f_{2}}\left(x_{2}\right)} \overbrace{p\left(x_{1}\right)} p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{2}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right)
$$

## Belief Propagation

## - A Toy Example

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{2}\right)
$$

## Factor graph

$$
\begin{array}{llll}
f_{1} & f_{2} & f_{3} & f_{4}
\end{array}
$$

- circle nodes represent random variables
- square nodes represent factorizing functions
- function node $f$ connects varible node $x$ if and only if $x$ is one of argument of $f$


$$
p\left(x_{2}\right)=\underbrace{\sum_{x_{1} \rightarrow f_{2}}\left(x_{2}\right)}_{m_{f_{2} \rightarrow x_{2}}^{\sum_{1}}\left(x_{2}\right)} p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{2}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{2}\right)
$$

## Belief Propagation

## - A Toy Example

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{2}\right)
$$

## Factor graph

| $f_{1}$ | $f_{2}$ | $f_{3}$ | $f_{4}$ |
| :--- | :--- | :--- | :--- |

- circle nodes represent random variables
- square nodes represent factorizing functions
- function node $f$ connects varible node $x$ if and only if $x$ is one of argument of $f$



## Belief Propagation

## - A Toy Example

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{2}\right)
$$

## Factor graph

$$
\begin{array}{llll}
f_{1} & f_{2} & f_{3} & f_{4}
\end{array}
$$

- circle nodes represent random variables
- square nodes represent factorizing functions
- function node $f$ connects varible node $x$ if and only if $x$ is one of argument of $f$



## Belief Propagation

## - A Toy Example

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{2}\right)
$$

## Factor graph

| $f_{1}$ | $f_{2}$ | $f_{3}$ | $f_{4}$ |
| :--- | :--- | :--- | :--- |

- circle nodes represent random variables
- square nodes represent factorizing functions
- function node $f$ connects varible node $x$ if and only if $x$ is one of argument of $f$

product of all incoming messages


## Belief Propagation

## - Factor Graph

BP on<br>general graph



Loopy Blief Propagation (LBP)
Factor to variable

Variable to factor

## Belief Propagation

## - Factor Graph

BP on
general graph


Loopy Blief Propagation (LBP)
Factor to variable

Variable to factor

## Belief Propagation

## - Factor Graph

BP on<br>general graph



Loopy Blief Propagation (LBP)
Factor to variable

$$
m_{a \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}, j \neq i} f_{a}\left(\mathbf{x}_{a}\right) \prod_{j \neq i} m_{j \rightarrow a}\left(x_{j}\right)
$$

Variable to factor

## Belief Propagation



Loopy Blief Propagation (LBP)
Factor to variable

$$
m_{a \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}, j \neq i} f_{a}\left(\mathbf{x}_{a}\right) \prod_{j \neq i} m_{j \rightarrow a}\left(x_{j}\right)
$$

Variable to factor

## Belief Propagation



Loopy Blief Propagation (LBP)
Factor to variable

$$
m_{a \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}, j \neq i} f_{a}\left(\mathbf{x}_{a}\right) \prod_{j \neq i} m_{j \rightarrow a}\left(x_{j}\right)
$$

Variable to factor

$$
m_{i \rightarrow a}\left(x_{i}\right)=\prod_{b \neq a} m_{b \rightarrow i}\left(x_{i}\right) \quad \begin{gathered}
\text { Excluding incomming } \\
\text { message itself }
\end{gathered}
$$

## Belief Propagation

## - Factor Graph

## BP on general graph



Loopy Blief Propagation (LBP)

$$
\begin{aligned}
& \text { Factor to variable } \\
& \text { mani }\left(x_{i}\right)=\sum_{x_{j}, j \neq i} f_{a}\left(\mathbf{x}_{a}\right) \prod_{j \neq i} m_{j \rightarrow a}\left(x_{j}\right) \\
& \text { Iterations } \\
& \text { Vraph with loops) }
\end{aligned} m_{i \rightarrow a}\left(x_{i}\right)=\prod m_{b \rightarrow i}\left(x_{i}\right) \text { Exclu }
$$

## Belief Propagation


figure copied from http://computerrobotvision.org/2009/tutorial_day/crv09_belief_propagation_v2.pdf

Message passing is a beautiful algorithmic framework to tackle difficult problems using divide and conquer by local compuation and information sharing

## Parametric Approximation

## - Parameterization

$$
\max \text { ELBO }=\sum_{\mathrm{x}} q(\mathrm{x}) \log p(\mathrm{x}, \mathrm{y})-\sum_{\mathrm{x}} q(\mathrm{x}) \log q(\mathrm{x})
$$

Parameterization $\quad q(\mathbf{x}) \equiv q(\mathbf{x} ; \boldsymbol{\phi})$

- Exponential famol $(\underline{x} ; \boldsymbol{\phi})=\exp \{\langle\boldsymbol{\phi}, \boldsymbol{\eta}(\mathbf{x})\rangle-\boldsymbol{A}(\boldsymbol{\phi})\} \quad$ E.g., Gaussian, Bernoulli, exponential...
- Deep nueral network, such as that used in vatiational auto-encoder (VAE)


## Parametric Approximation

## - Parameterization

$$
\max \text { ELBO }=\sum_{\mathrm{x}} q(\mathrm{x}) \log p(\mathrm{x}, \mathrm{y})-\sum_{\mathrm{x}} q(\mathrm{x}) \log q(\mathrm{x})
$$

Parameterization $\quad q(\mathbf{x}) \equiv q(\mathbf{x} ; \boldsymbol{\phi})$

- Exponential famol $(\underline{x} ; \boldsymbol{\phi})=\exp \{\langle\boldsymbol{\phi}, \boldsymbol{\eta}(\mathbf{x})\rangle-\boldsymbol{A}(\boldsymbol{\phi})\} \quad$ E.g., Gaussian, Bernoulli, exponential...
- Deep nueral network, such as that used in vatiational auto-encoder (VAE)

New Optimization Obejective

$$
\max _{\boldsymbol{\phi}} \operatorname{ELBO}(\boldsymbol{\phi})=\sum_{\mathrm{x}} q(\mathbf{x} ; \boldsymbol{\phi}) \log p(\mathbf{x}, \mathbf{y})-\sum_{\mathrm{x}} q(\mathbf{x} ; \boldsymbol{\phi}) \log q(\mathbf{x} ; \boldsymbol{\phi})
$$



Stochastic variational inference framework

The variational parameters are optimzied usign SGD
[Hoffman et al 2013]

## Parametric Approximation

## - Parameterization

$$
\max \text { ELBO }=\sum_{\mathrm{x}} q(\mathrm{x}) \log p(\mathrm{x}, \mathrm{y})-\sum_{\mathrm{x}} q(\mathrm{x}) \log q(\mathrm{x})
$$

Parameterization $\quad q(\mathbf{x}) \equiv q(\mathbf{x} ; \boldsymbol{\phi})$

- Exponential famil $\mid x \times \phi)=\exp \{\langle\phi, \eta(x)\rangle-A(\phi)\} \quad$ E.g., Gaussian, Bernoulli, exponential...
- Deep nueral network, such as that used in vatiational auto-encoder (VAE)

New Optimization Obejective



Stochastic variational inference framework

The original integration problem boilds down to derivative problem

## Outline

- Background
- Variational Inference
- Expectation Propagation
- A Unified EP Perspective on AMP and its extensions
- Conclusion


## A Toy Problem

## - Problem Statement

we obtain a sequence of data points $y_{i}, i=1 \ldots N$



# What is the value of $x$ ? 

This example is modified from example in [Minka01b]

## A Toy Problem

## - Probabilistic Modeling

- prior distribution $\quad p(x)=\mathcal{N}(x ; 0,100) \quad$ Guassian prior
- likelihood distribution $\left(y_{i} \mid x\right)=0.5 \mathcal{N}\left(y_{i} ; x, 1\right)+0.5 \mathcal{N}\left(y_{i} ; x+10,5\right)$

After obtaining $\boldsymbol{N}$ observations, the joint distribution could be written as

$$
p(x, \mathbf{y})=p(x) \prod_{i=1}^{N} p\left(y_{i} \mid x\right)
$$

- posterior distribution

$$
p(x \mid \mathbf{y})=\frac{p(x) \prod_{i=1}^{N} p\left(y_{i} \mid x\right)}{p(\mathbf{y})}
$$

We could perform Bayesian inference to compute the posterior distribution

All the codes for this toy example are available: https://github.com/mengxiangming/ep-demo

## A Toy Problem

## - Factor Graph and Belief Propagation $N$

$$
p(x, \mathbf{y})=p(x) \prod_{i=1} p\left(y_{i} \mid x\right)
$$



Belief Propagation

$$
\text { factor to vaiable: } \quad m_{i \rightarrow x}(x)=p\left(y_{i} \mid x\right)
$$

$$
\text { vaiable update: } \quad q(x)=p(x) \prod_{i=1}^{N} m_{i \rightarrow x}(x)
$$

## Already Done?

$p\left(y_{i} \mid x\right)=0.5 \mathcal{N}\left(y_{i} ; x, 1\right)+0.5 \mathcal{N}\left(y_{i} ; x+10,5\right)$
$p(x)=\mathcal{N}(x ; 0,100)$

## A Toy Problem

- Factor Graph and Belief Propagation $N$

$$
p(x, \mathbf{y})=p(x) \prod_{i=1} p\left(y_{i} \mid x\right)
$$

Belief Propagation

factor to vaiable: $\quad m_{i \rightarrow x}(x)=p\left(y_{i} \mid x\right)$

$$
\text { vaiable update: } \quad q(x)=p(x) \prod_{i=1}^{N} m_{i \rightarrow x}(x)
$$

## Already Done?

$p\left(y_{i} \mid x\right)=0.5 \mathcal{N}\left(y_{i} ; x, 1\right)+0.5 \mathcal{N}\left(y_{i} ; x+10,5\right)$

- The posterior distribution is a mixture of ${ }^{\mathrm{N}}$

Gaussians.

- The computational complexity is exponential with $\mathbf{N}$


## A Toy Problem

## - The True Posterior

True Posterior Distribution $\mathrm{p}(\mathrm{x} \mid \mathrm{y})$


## A Toy Problem

## - The True Posterior

## Approximating the posterior as one Gaussian distribution

## A Toy Problem

## - A Naive Approximation



Approximating each BP message itself as Gaussian distribution independently
factor to vaiable: $\quad m_{i \rightarrow x}(x) \approx \mathcal{N}\left(x ; m_{i}, v_{i}\right)$
vaiable update: $\quad q(x) \approx p(x) \prod_{i=1}^{N} \mathcal{N}\left(x ; m_{i}, v_{i}\right)$
Naive Gaussian Message Approximation

## A Toy Problem

## - A Naive Approximation



Approximating each BP message itself as Gaussian distribution independently
factor to vaiable: $m_{i \rightarrow x}(x) \approx \mathcal{N}\left(x ; m_{i}, v_{i}\right)$ vaiable update: $\quad q(x) \approx p(x) \prod_{i=1}^{N} \mathcal{N}\left(x ; m_{i}, v_{i}\right)$

Naive Gaussian Message Approximation

True Posterior
$p(x \mid \mathbf{y}) \propto p(x) \prod^{N} p\left(y_{i} \mid x\right)$


Each non-Gaussian likelihood is approximated as a Gaussian factor

## A Toy Problem

## - A Naive Approximation



Approximating each BP message itself as Gaussian distribution independently
factor to vaiable: $\quad m_{i \rightarrow x}(x) \approx \mathcal{N}\left(x ; m_{i}, v_{i}\right)$ vaiable update: $q(x) \approx p(x) \prod_{i=1}^{N} \mathcal{N}\left(x ; m_{i}, v_{i}\right)$

## Naive Gaussian Message Approximation

True Posterior

$$
p(x \mid \mathbf{y}) \propto p(x) \prod^{N} p\left(y_{i} \mid x\right)
$$

$$
p(x \mid \mathbf{y}) \propto p(x) \prod_{i=1}^{N^{i=1}}{ }^{\mathcal{N}\left(x ; m_{i}, v_{i}\right)}
$$

Each non-Gaussian likelihood is approximated as a Gaussian factor

The posterior will be also Gaussian due to the product rule of Gaussian

$$
\begin{array}{lc}
\mathcal{N}(x ; m, v) \propto \mathcal{N}\left(x ; m_{1}, v_{1}\right) \mathcal{N}\left(x ; m_{2}, v_{2}\right) \\
\frac{1}{v}=\frac{1}{v_{1}}+\frac{1}{v_{2}} \quad \frac{m}{v}=\frac{m_{1}}{v_{1}}+\frac{m_{2}}{v_{2}}
\end{array}
$$

## A Toy Problem

## - A Naive Approximation

For each non-Gaussian message

$$
p\left(y_{i} \mid x\right)=0.5 \mathcal{N}\left(y_{i} ; x, 1\right)+0.5 \mathcal{N}\left(y_{i} ; x+10,5\right)
$$

Gaussian Approximation $\quad \tilde{t}_{i}(x) \triangleq \operatorname{Proj}\left[p\left(y_{i} \mid x\right)\right]$
Gassian Projection Operator


## A Toy Problem

## - A Naive Approximation

For each non-Gaussian message

$$
p\left(y_{i} \mid x\right)=0.5 \mathcal{N}\left(y_{i} ; x, 1\right)+0.5 \mathcal{N}\left(y_{i} ; x+10,5\right)
$$

Gaussian Approximation

$$
\tilde{t}_{i}(x) \triangleq \operatorname{Proj}\left[p\left(y_{i} \mid x\right)\right]
$$

Gassian Projection Operator


$$
\begin{aligned}
q(x) & =\underset{q \in \operatorname{Gaussian}}{\arg \max } K L(p(x) \| q(x)) \\
q(x) & \triangleq \operatorname{Proj}[p(x)] \quad m=\mathrm{E}_{p(x)}(x) \\
& =\mathcal{N}(x ; m, v) \quad v=\operatorname{Var}_{p(x)}(x)
\end{aligned}
$$

Moment Matching

## A Toy Problem

## - A Naive Approximation

For each non-Gaussian message

$$
p\left(y_{i} \mid x\right)=0.5 \mathcal{N}\left(y_{i} ; x, 1\right)+0.5 \mathcal{N}\left(y_{i} ; x+10,5\right)
$$

Gaussian Approximation

$$
\tilde{t}_{i}(x) \triangleq \operatorname{Proj}\left[p\left(y_{i} \mid x\right)\right]
$$

Gassian Projection Operator


## A Toy Problem

## - A Naive Approximation






## A Toy Problem

## - A Naive Approximation






There is still a big discrepancy between the true posterior and naive Gaussian approximation, even when the true postrior approaches Gaussian! ${ }^{1}$

## A Toy Problem

- A Naive Approximation

Because it is naive selfish

## A Toy Problem

- A Naive Approximation


## Because it is naive selfish

## Each factor (message) only cares about itself when making approximations while forgetting the ultimate goal is to make a good approximation to the global posterior

## A Toy Problem

## - An Alternative Gaussian Approximation

Consider the simple case of $\mathrm{N}=1$ (only one observation)

$$
\text { True posterior } \quad p(x \mid \mathbf{y}) \propto \underbrace{p(x) \underbrace{p}_{1}\left(y_{1} \mid x\right)}_{\mathbf{G} \text { auss Non-Gauss }}
$$

- Step 1: Approximating the product $\quad p(x) p$ (9 $/ \mathbf{G}$ acussian
$\operatorname{Proj}\left[p(x) p\left(y_{1} \mid x\right)\right]$


## A Toy Problem

## - An Alternative Gaussian Approximation

Consider the simple case of $\mathrm{N}=1$ (only one observation)

$$
\text { True posterior } \quad p(x \mid \mathbf{y}) \propto \underbrace{p(x)}_{\text {Gauss Non-Gauss }} p\left(y_{1} \mid x\right)
$$

- Step 1: Approximating the product $\quad p(x) p$ ás/Glacissian $\quad \operatorname{Proj}\left[p(x) p\left(y_{1} \mid x\right)\right]$
- Step 2: Divide the Gaussian $\operatorname{Proj}\left[p(x) p\left(b y_{1} \mid x\right)\right]$ to ghtajin) a Gaussian

$$
\tilde{t}_{1}(x)=\frac{\operatorname{Proj}\left[p(x) p\left(y_{1} \mid x\right)\right]}{p(x)}
$$

taking care of $p(x)$ when approximating
$p\left(y_{1} \mid x\right)$

## A Toy Problem

## - An Alternative Gaussian Approximation

Consider the simple case of $\mathrm{N}=1$ (only one observation)
True posterior $\quad p(x \mid \mathbf{y}) \propto \underbrace{p(x)}_{\text {Gauss Non-Gauss }} p\left(y_{1} \mid x\right)$

- Step 1: Approximating the product $\quad p(x) p$ és $/ \mathbf{G l a c} s s^{2} i a n \quad \operatorname{Proj}\left[p(x) p\left(y_{1} \mid x\right)\right]$
- Step 2: Divide the Gaussian $\operatorname{Proj}\left[p(x) p\left(b y_{1} \mid x\right)\right]$ to ghtajin) a Gaussian

$$
\tilde{t}_{1}(x)=\frac{\operatorname{Proj}\left[p(x) p\left(y_{1} \mid x\right)\right]}{p(x)}
$$

taking care of $p(x)$ when approximating
$p\left(y_{1} \mid x\right)$

Posterior Gauss approximation

## A Toy Problem

## - Assumed Density Filtering (ADF)

Consider general case of N obersvations
True posterior

$$
p(x \mid \mathbf{y}) \propto p(x) p\left(y_{1} \mid x\right) p\left(y_{2} \mid x\right) p\left(y_{3} \mid x\right) \cdots p\left(y_{N} \mid x\right)
$$

Approximate posterior

$$
q(x \mid \mathbf{y}) \propto p(x) \tilde{t}_{1}(x) \tilde{t}_{2}(x) \tilde{t}_{3}(x) \cdots \tilde{t}_{N}(x)
$$

## A Toy Problem

## - Assumed Density Filtering (ADF)

Consider general case of N obersvations
True posterior

$$
p(x \mid \mathbf{y}) \propto p(x) p\left(y_{1} \mid x\right) p\left(y_{2} \mid x\right) p\left(y_{3} \mid x\right) \cdots p\left(y_{N} \mid x\right)
$$

Approximate posterior

$$
q(x \mid \mathbf{y}) \propto p(x) \tilde{t}_{1}(x) \tilde{t}_{2}(x) \tilde{t}_{3}(x) \cdots \tilde{t}_{N}(x)
$$

## ADF Algorithm

- Initialize $q^{0}(x)=p(x)$
- For each new observation $y_{i}$

Inclusion $\quad \hat{p}(x)=\frac{q^{i-1}(x) p\left(y_{i} \mid x\right)}{\int q^{i-1}(x) p\left(y_{i} \mid x\right) d x}$
Projection $\quad q^{i}(x)=\operatorname{Proj}[\hat{p}(x)]$


## A Toy Problem

## - Assumed Density Filtering (ADF)

Consider general case of N obersvations
True posterior

$$
p(x \mid \mathbf{y}) \propto p(x) p\left(y_{1} \mid x\right) p\left(y_{2} \mid x\right) p\left(y_{3} \mid x\right) \cdots p\left(y_{N} \mid x\right)
$$

Approximate posterior

## ADF Algorithm

- Initialize $q^{0}(x)=p(x)$
- For each new observation $y_{i}$

Inclusion $\quad \hat{p}(x)=\frac{q^{i-1}(x) p\left(y_{i} \mid x\right)}{\int q^{i-1}(x) p\left(y_{i} \mid x\right) d x}$
Projection $\quad q^{i}(x)=\operatorname{Proj}[\hat{p}(x)]$


ADF is one kind of sequential Gaussian Projector [Minka01b]

$$
\begin{aligned}
& \xrightarrow{q^{i-1}(x)} \\
& \tilde{t}_{1}(x) \quad \tilde{t}_{2}(x) p\left(y_{3} \mid x\right) p\left(y_{4} \mid x\right) p\left(y_{5} \mid x\right) \\
& \downarrow \\
& \xrightarrow{\tilde{t}_{1}(x) \quad \tilde{t}_{2}(x) \quad \tilde{t}_{3}(x)} p\left(y_{4} \mid x\right) p\left(y_{5} \mid x\right) \\
& q^{i}(x)
\end{aligned}
$$

## A Toy Problem

## - Assumed Density Filtering (ADF)






## A Toy Problem

## - Assumed Density Filtering (ADF)

However, ADF is sensitive to the order of approximations !


How to avoid the effect of different ordering

## A Toy Problem

## - Expectation Propagation

Expectation Propagation = ADF + Iteratively Refine

## A Toy Problem

## - Expectation Propagation

## Expectation Propagation = ADF + Iteratively Refine

True posterior

Approximate posterior

$$
\begin{aligned}
& p(x \mid \mathbf{y}) \propto p(x) p\left(y_{1} \mid x\right) p\left(y_{2} \mid x\right) p\left(y_{3} \mid x\right) \cdots p\left(y_{N} \mid x\right) \\
& q(x \mid \mathbf{y}) \propto p(x) \tilde{t}_{1}(x) \tilde{t}_{2}(x) \tilde{t}_{3}(x) \cdots \tilde{t}_{N}(x)
\end{aligned}
$$

## EP Algorithm

- Initialize $\tilde{t}_{i}(x), i=1 \ldots N, q(x)=p(x) \prod \tilde{t}_{i}(x)$
- For iter = 1... Num_iter

For $i$ in $1 . . . N$
division

$$
q^{\backslash i}(x) \propto \frac{q(x)}{\tilde{t}_{i}(x)}=p(x) \prod_{j \neq i} \tilde{t}_{j}(x)
$$

inclusion

$$
\hat{p}(x)=\frac{q^{\backslash i}(x) p\left(y_{i} \mid x\right)}{\int q^{\backslash i}(x) p\left(y_{i} \mid x\right) d x}
$$

projection

$$
q(x)=\operatorname{Proj}[\hat{p}(x)]
$$

refinement $\quad \tilde{t}_{i}(x) \propto \frac{q(x)}{q^{\backslash i}(x)}$

## A Toy Problem

## - Expectation Propagation

## Expectation Propagation = ADF + Iteratively Refine

True posterior

Approximate posterior

$$
p(x \mid \mathbf{y}) \propto p(x) p\left(y_{1} \mid x\right) p\left(y_{2} \mid x\right) p\left(y_{3} \mid x\right) \cdots p\left(y_{N} \mid x\right)
$$

$$
q(x \mid \mathbf{y}) \propto p(x) \tilde{t}_{1}(x) \tilde{t}_{2}(x) \tilde{t}_{3}(x) \cdots \tilde{t}_{N}(x)
$$

## EP Algorithm

- Initialize $\tilde{t}_{i}(x), i=1 \ldots N, q(x)=p(x) \prod \tilde{t}_{i}(x)$
- For iter = 1... Num_iter

For $i$ in 1... $N$
division

$$
q^{\backslash i}(x) \propto \frac{q(x)}{\tilde{t}_{i}(x)}=p(x) \prod_{j \neq i} \tilde{t}_{j}(x)
$$

inclusion

$$
\hat{p}(x)=\frac{q^{\backslash i}(x) p\left(y_{i} \mid x\right)}{\int q^{\backslash i}(x) p\left(y_{i} \mid x\right) d x}
$$

projection

$$
q(x)=\operatorname{Proj}[\hat{p}(x)]
$$

refinement

$$
\tilde{t}_{i}(x) \propto \frac{q(x)}{q^{\backslash i}(x)}
$$ and is not affected by orderf[Minka01b]

$$
\begin{aligned}
& \begin{array}{c}
\xrightarrow{q^{\backslash i}(x)}<{ }^{<} \\
\tilde{t}_{1}(x) \quad \tilde{t}_{2}(x) p\left(y_{3} \mid x\right)
\end{array} \begin{array}{cc}
\tilde{t}_{4}(x) & \tilde{t}_{5}(x)
\end{array} \\
& \underset{\leftarrow}{\tilde{t}_{1}(x)} \begin{array}{cccc}
\tilde{t}_{2}(x) & \tilde{t}_{3}(x) & \tilde{t}_{4}(x) & \tilde{t}_{5}(x) \\
\longrightarrow
\end{array} \\
& q(x)
\end{aligned}
$$

## A Toy Problem

## - Expectation Propagation






## A Toy Problem

## - Expectation Propagation



## EP as Optimization

$\square$ Expectation Propagation (EP) [Minka01] [Opper05]

$$
p(\mathbf{x})=\prod_{a} f_{a}(\mathbf{x}) \xrightarrow{\text { approximated as }} \quad q(\mathbf{x})=\prod_{a} \tilde{f}_{a}(\mathbf{x})
$$



Optimization objective: $\quad \min K L(p(\mathbf{x}) \| q(\mathbf{x}))$

## EP as Optimization

$\square$ Expectation Propagation (EP) [Minka01] [Opper05]

$$
p(\mathbf{x})=\prod_{a} f_{a}(\mathbf{x}) \xrightarrow{\text { approximated as }} \quad q(\mathbf{x})=\prod_{a} \tilde{f}_{a}(\mathbf{x})
$$



Optimization objective: $\quad \min K L(p(\mathbf{x}) \| q(\mathbf{x}))$

## Iterative local optimization

Iteratively refine each factor

$$
\tilde{f}_{a}(\mathbf{x})=\underset{t(\mathbf{x}) \in \Phi}{\arg \min } K L\left(f_{a}(\mathbf{x}) \prod_{b \neq a} \tilde{f}_{b}(\mathbf{x}) \| t(\mathbf{x}) \prod_{b \neq a} \tilde{f}_{b}(\mathbf{x})\right)
$$

## EP as Optimization

$\square$ Expectation Propagation (EP) [Minka01] [Opper05]

$$
p(\mathbf{x})=\prod_{a} f_{a}(\mathbf{x}) \xrightarrow{\text { approximated as }} \quad q(\mathbf{x})=\prod_{a} \tilde{f}_{a}(\mathbf{x})
$$



Optimization objective: $\quad \min K L(p(\mathbf{x}) \| q(\mathbf{x}))$
Iterative local optimization
Iteratively refine each factor

$$
\tilde{f}_{a}(\mathbf{x})=\underset{t(\mathbf{x}) \in \Phi}{\arg \min } K L\left(f_{a}(\mathbf{x}) \prod_{b \neq a} \tilde{f}_{b}(\mathbf{x}) \| t(\mathbf{x}) \prod_{b \neq a} \tilde{f}_{b}(\mathbf{x})\right)
$$

- BP minimizes $K L(q \| p)$ while EP minimizes $K L(p|\mid q)$
- EP can be also implemented as message passing on factor graph


## EP as Message Passing

## - Factor Graph



Expectation Propagation
Factor to variable

$$
m_{a \rightarrow i}\left(x_{i}\right)=\frac{\operatorname{Proj}\left[m_{i \rightarrow a}\left(x_{i}\right) \sum_{x_{j}, j \neq i} f_{a}\left(\mathbf{x}_{a}\right) \prod_{j \neq i} m_{j \rightarrow a}\left(x_{j}\right)\right]}{m_{i \rightarrow a}\left(x_{i}\right)}
$$

Variable to factor

$$
m_{i \rightarrow a}\left(x_{i}\right)=\prod_{b \neq a} m_{b \rightarrow i}\left(x_{i}\right)
$$

Excluding incomming message itself

## EP vs. BP



- minimize KL (p\|q)
- A generalization of BP
- Discrete \& continuous variable
- Might iterative without loop

- minimize KL (q\|p)
- EP with fully factorization
- Dicrete variable
- Non-iterative without loop
- EP is related to the cavity method in physics [M' ezard et al 87] [Opper\&Saad 01]


## Outline

- Background
- Variational Inference
- Expectation Propagation
- A Unified EP Perspective on AMP and its extensions
- Conclusion


## Linear Observations

## - Problem Statement

|  |  | $\mathbf{n} \in \mathbb{R}^{M}$ |  |
| :---: | :---: | :---: | :---: |
| Unknown Signal/parameters | linear mixing |  | observations |
| $\mathbf{x} \in \mathbb{R}^{N}$ | $\mathbf{A} \in \mathbb{R}^{M \times N}$ |  | $\mathbf{y} \in \mathbb{R}^{M}$ |
| $\mathbf{x} \sim p_{0}(\mathbf{x})$ | $=\mathbf{A} \mathbf{X}+$ | $\mathbf{n} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$ |  |

- The goal is to recover signal $\mathbf{x}$ given the observations $\mathbf{y}$.
- A fundamental problem in communication, compressed sensing, statistics


## Linear Observations

## - Problem Statement



- The goal is to recover signal $\mathbf{x}$ given the observations $\mathbf{y}$.
- A fundamental problem in communication, compressed sensing, statistics

First, we write the the joint distribution can be written as follows

$$
\begin{array}{rlrl}
p(\mathbf{x}, \mathbf{y}) & =p_{0}(\mathbf{x}) p(\mathbf{y} \mid \mathbf{x}) & \\
& =p_{0}(\mathbf{x}) \frac{1}{\left(2 \pi \sigma^{2}\right)^{\frac{M}{2}}} e^{-\frac{(\mathbf{y}-\mathbf{A} \mathbf{x})^{T}(\mathbf{y}-\mathbf{A x})}{2 \sigma^{2}}} & & \text { Vector-Form } \\
& =\prod_{i=1}^{N} p_{0}\left(x_{i}\right) \prod_{a=1}^{M} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left(y_{a}-\sum A_{a i} x_{i}\right)^{2}}{2 \sigma^{2}}} & & \text { Fully-Factorized }
\end{array}
$$

## Linear Observations

## - Fully-Factorized Factor Graph



Expectation Propagation (EP)

$$
\begin{aligned}
& m_{a \rightarrow i}^{t}\left(x_{i}\right) \propto \operatorname{Proj}_{\Phi}\left[m_{i \rightarrow a}^{t}\left(x_{i}\right) \int \prod_{j \neq i} m_{j \rightarrow a}^{t}\left(x_{j}\right) p\left(y_{a} \mid \mathbf{x}\right)\right] \\
& m_{i \rightarrow a}^{t+1}\left(x_{i}\right) \propto \frac{\operatorname{Pro}_{\Phi \rightarrow a}^{t}\left(x_{i}\right)}{\left.{ }_{p}\left(x_{0}\right) \prod_{i \rightarrow} m_{b \rightarrow i}^{t}\left(x_{i}\right)\right]} \\
& m_{a \rightarrow i}^{t}\left(x_{i}\right)
\end{aligned}
$$

## Linear Observations

## - Fully-Factorized Factor Graph



Expectation Propagation (EP)

$$
\begin{aligned}
& m_{a \rightarrow i}^{t}\left(x_{i}\right) \propto \operatorname{Proj}_{\Phi}\left[m_{i \rightarrow a}^{t}\left(x_{i}\right) \int \prod_{j \neq i} m_{j \rightarrow a}^{t}\left(x_{j}\right) p\left(y_{a} \mid \mathbf{x}\right)\right] \\
&\left.m_{i \rightarrow a}^{t+1}\left(x_{i}\right) \propto \frac{\operatorname{Pro}_{\Phi}\left[{ }_{i \rightarrow a}^{t}\left(x_{i}\right)\right.}{}\left(x_{i}\right) \prod_{b} m_{b \rightarrow i}^{t}\left(x_{i}\right)\right] \\
& m_{a \rightarrow i}^{t}\left(x_{i}\right)
\end{aligned}
$$



## Linear Observations

$$
\begin{aligned}
& \text { An EP Perspective On AMP } \\
& m_{a \rightarrow i}^{t}\left(x_{i}\right) \propto \mathcal{N}\left(x_{i} ; \hat{x}_{a \rightarrow i}^{t}, v_{a \rightarrow i}^{t+1}\left(x_{i}\right) \propto \mathcal{N}\left(x_{i} ; \hat{x}_{i \rightarrow a}^{t+1}, v_{i \rightarrow a}^{t+1}\right)\right.
\end{aligned} \quad \text { where }\left\{\begin{array}{l}
V_{a \rightarrow i}^{t}=\sum_{i \neq i}\left|A_{a j}\right|^{2} \nu_{j \rightarrow a}^{t} \quad Z_{a \rightarrow i}^{t}=\sum_{j \neq i} A_{a j} \hat{x}_{j \rightarrow a}^{t} \\
\hat{x}_{a \rightarrow i}^{t}=\frac{y_{a}-Z_{a \rightarrow i}^{t}, v_{a \rightarrow i}^{t}=\frac{\sigma^{2}+V_{a \rightarrow i}^{t}}{A_{a i}}}{\left|A_{a i}\right|^{2}} \\
\Sigma_{i}^{t}=\left[\sum_{a} \frac{\left|A_{a i}\right|^{2}}{\sigma^{2}+V_{a \rightarrow i}^{t}}\right]^{-1} \cdot R_{i}^{t}=\Sigma_{i}^{t} \sum_{a} \frac{A_{a i}^{*}\left(y_{a}-Z_{a \rightarrow i}^{t}\right)}{\sigma^{2}+V_{a \rightarrow i}^{t}} \\
\hat{x}_{i}^{t+1}=f_{a}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \quad \hat{\nu}_{i}^{t+1}=f_{c}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \\
\frac{1}{\nu_{i \rightarrow a}^{t+1}}=\frac{1}{\nu_{i}^{t+1}}-\frac{\left|A_{a i}\right|^{2}}{\sigma^{2}+V_{a \rightarrow i}^{t}}, \\
\hat{x}_{i \rightarrow a}^{t+1}=\nu_{i \rightarrow a}^{t+1}\left(\frac{\hat{x}_{i}^{t+1}}{\nu_{i}^{t+1}}-\frac{A_{a i}^{*}\left(y_{a}-Z_{a \rightarrow i}^{t}\right)}{\sigma^{2}+V_{a \rightarrow i}^{t}}\right)
\end{array}\right.
$$

## Linear Observations

## ■ An EP Perspective on AMP

$$
\begin{aligned}
m_{a \rightarrow i}^{t}\left(x_{i}\right) & \propto \mathcal{N}\left(x_{i} ; \hat{x}_{a \rightarrow i}^{t}, v_{a \rightarrow i}^{t}\right) \\
m_{i \rightarrow a}^{t+1}\left(x_{i}\right) & \propto \mathcal{N}\left(x_{i} ; \hat{x}_{i \rightarrow a}^{t+1}, v_{i \rightarrow a}^{t+1}\right)
\end{aligned}
$$

- However, the number of messages are $O(M N)$, which is still intractable for high-dimensional problems

$$
\begin{aligned}
& V_{a \rightarrow i}^{t}=\sum_{i \neq i}\left|A_{a j}\right|^{2} \nu_{j \rightarrow a}^{t} \quad Z_{a \rightarrow i}^{t}=\sum_{j \neq i} A_{a j} \hat{x}_{j \rightarrow a}^{t} \\
& \hat{x}_{a \rightarrow i}^{t}=\frac{y_{a}-Z_{a \rightarrow i}^{t}}{A_{a i}}, v_{a \rightarrow i}^{t}=\frac{\sigma^{2}+V_{a \rightarrow i}^{t}}{\left|A_{a i}\right|^{2}} \\
& \Sigma_{i}^{t}=\left[\sum_{a} \frac{\left|A_{a i}\right|^{2}}{\sigma^{2}+V_{a \rightarrow i}^{t}}\right]^{-1} \quad R_{i}^{t}=\Sigma_{i}^{t} \sum_{a} \frac{A_{a i}^{*}\left(y_{a}-Z_{a \rightarrow i}^{t}\right)}{\sigma^{2}+V_{a \rightarrow i}^{t}} \\
& \hat{x}_{i}^{t+1}=f_{a}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \quad \hat{\nu}_{i}^{t+1}=f_{c}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \\
& \frac{1}{\nu_{i \rightarrow a}^{t+1}}=\frac{1}{\nu_{i}^{t+1}}-\frac{\left|A_{a i}\right|^{2}}{\sigma^{2}+V_{a \rightarrow i}^{t}}, \\
& \hat{x}_{i \rightarrow a}^{t+1}=\nu_{i \rightarrow a}^{t+1}\left(\frac{\hat{x}_{i}^{t+1}}{\nu_{i}^{t+1}}-\frac{A_{a i}^{*}\left(y_{a}\right.}{\sigma^{2}+}\right. \text { Complill Too }
\end{aligned}
$$

## Linear Observations

## - An EP Perspective on AMP

$$
\begin{aligned}
m_{a \rightarrow i}^{t}\left(x_{i}\right) & \propto \mathcal{N}\left(x_{i} ; \hat{x}_{a \rightarrow i}^{t}, v_{a \rightarrow i}^{t}\right) \\
m_{i \rightarrow a}^{t+1}\left(x_{i}\right) & \propto \mathcal{N}\left(x_{i} ; \hat{x}_{i \rightarrow a}^{t+1}, v_{i \rightarrow a}^{t+1}\right)
\end{aligned}
$$

- However, the number of messages are $O(M N)$, which is still intractable for high-dimensional problems
- To reduce the number of messages, neglect the highorder terms in large system limit.

$$
\begin{aligned}
& V_{a \rightarrow i}^{t}=\sum_{i \neq i}\left|A_{a j}\right|^{2} \nu_{j \rightarrow a}^{t} \quad Z_{a \rightarrow i}^{t}=\sum_{j \neq i} A_{a j} \hat{x}_{j \rightarrow a}^{t} \\
& \hat{x}_{a \rightarrow i}^{t}=\frac{y_{a}-Z_{a \rightarrow i}^{t}}{A_{a i}}, v_{a \rightarrow i}^{t}=\frac{\sigma^{2}+V_{a \rightarrow i}^{t}}{\left|A_{a i}\right|^{2}} \\
& \Sigma_{i}^{t}=\left[\sum_{a} \frac{\left|A_{a i}\right|^{2}}{\sigma^{2}+V_{a \rightarrow i}^{t}}\right]^{-1} R_{i}^{t}=\Sigma_{i}^{t} \sum_{a} \frac{A_{a i}^{*}\left(y_{a}-Z_{a \rightarrow i}^{t}\right)}{\sigma^{2}+V_{a \rightarrow i}^{t}} \\
& \hat{x}_{i}^{t+1}=f_{a}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \quad \hat{\nu}_{i}^{t+1}=f_{c}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \\
& \frac{1}{\nu_{i \rightarrow a}^{t+1}}=\frac{1}{\nu_{i}^{t+1}}-\frac{\left|A_{a i}\right|^{2}}{\sigma^{2}+V_{a \rightarrow i}^{t}}, \\
& \hat{x}_{i \rightarrow a}^{t+1}=\nu_{i \rightarrow a}^{t+1}\left(\frac{\hat{x}_{i}^{t+1}}{\nu_{i}^{t+1}}-\frac{A_{a i}^{*}\left(y_{a}\right.}{\sigma^{2}+}\right. \text { Complill Too }
\end{aligned}
$$

$$
\begin{aligned}
& Z_{a}^{t}=\sum_{i} A_{a i} \hat{x}_{i \rightarrow a}^{t} \quad V_{a}^{t}=\sum_{i}\left|A_{a i}\right|^{2} \nu_{i \rightarrow a}^{t} \\
& Z_{a \rightarrow i}^{t}=Z_{a}^{t}-A_{a i} \hat{x}_{i \rightarrow a}^{t}, \\
& V_{a \rightarrow i}^{t}=V_{a}^{t}-\left.A_{a i}\right|^{2} \nu_{i \rightarrow a}^{t} \\
& \text { Be careful! } \\
& V_{a \rightarrow i}^{t+1} \approx V_{a}^{t}
\end{aligned}
$$

## Linear Observations

## - An EP Perspective on AMP

$$
\begin{aligned}
& m_{a \rightarrow i}^{t}\left(x_{i}\right) \propto \mathcal{N}\left(x_{i} ; \hat{x}_{a \rightarrow i}^{t}, v_{a \rightarrow i}^{t}\right) \\
& m_{i \rightarrow a}^{t+1}\left(x_{i}\right) \propto \mathcal{N}\left(x_{i} ; \hat{x}_{i \rightarrow a}^{t+1}, v_{i \rightarrow a}^{t+1}\right)
\end{aligned}
$$

- However, the number of messages are $O(M N)$, which is still intractable for high-dimensional problems
- To reduce the number of messages, neglect the highorder terms in large system limit.

$$
\begin{aligned}
& V_{a \rightarrow i}^{t}=\sum_{i \neq i}\left|A_{a j}\right|^{2} \nu_{j \rightarrow a}^{t} \quad Z_{a \rightarrow i}^{t}=\sum_{j \neq i} A_{a j} \hat{x}_{j \rightarrow a}^{t} \\
& \hat{x}_{a \rightarrow i}^{t}=\frac{y_{a}-Z_{a \rightarrow i}^{t}}{A_{a i}}, v_{a \rightarrow i}^{t}=\frac{\sigma^{2}+V_{a \rightarrow i}^{t}}{\left|A_{a i}\right|^{2}} \\
& \Sigma_{i}^{t}=\left[\sum_{a} \frac{\left|A_{a i}\right|^{2}}{\sigma^{2}+V_{a \rightarrow i}^{t}}\right]^{-1} \quad R_{i}^{t}=\Sigma_{i}^{t} \sum_{a} \frac{A_{a i}^{*}\left(y_{a}-Z_{a \rightarrow i}^{t}\right)}{\sigma^{2}+V_{a \rightarrow i}^{t}} \\
& \hat{x}_{i}^{t+1}=f_{a}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \quad \hat{\nu}_{i}^{t+1}=f_{c}\left(R_{i}^{t}, \Sigma_{i}^{t}\right) \\
& \frac{1}{\nu_{i \rightarrow a}^{t+1}}=\frac{1}{\nu_{i}^{t+1}}-\frac{\left|A_{a i}\right|^{2}}{\sigma^{2}+V_{a \rightarrow i}^{t}}, \quad \text { Still Too }
\end{aligned}
$$

> Loop: For $t=1, \ldots, T$
> End

$$
\begin{aligned}
& Z_{a}^{t}=\sum_{i} A_{a i} \hat{x}_{i \rightarrow a}^{t} \quad V_{a}^{t}=\sum_{i}\left|A_{a i}\right|^{2} \nu_{i \rightarrow a}^{t} \\
& Z_{a \rightarrow i}^{t}=Z_{a}^{t}-A_{a i} \hat{x}_{i \rightarrow a}^{t}, \\
& V_{a \rightarrow i}^{t}=V_{a}^{t}-\left.A_{a i}\right|^{2} \nu_{i \rightarrow a}^{t} \\
& \text { Be careful! }_{t+1}^{V_{a \rightarrow i}^{t} \approx V_{a}^{t}} \\
& \nu_{i \rightarrow a}^{t+1}
\end{aligned}
$$

 reduced to $O(M+N)$ and we obtain AMP
X. Meng, S. Wu, L. Kuang, and J. Lu, "An expectation propagation perspective on approximate message passing," IEEE Signal Processing Letters, vol. 22, no. 8, pp. 1194-1197, Aug. 2015.

## Relation to AMP

## - An EP Perspective on AMP

AMP iteratively decouples the original vector inference problem to scalar inference problems

$$
\mathbf{y}=\mathbf{A x}+\mathbf{n} \quad \begin{aligned}
& \text { decoupled } \\
& R_{1}=x_{1}+\tilde{n}_{1} \\
& \vdots \\
& R_{N}=x_{N}+\tilde{n}_{N}
\end{aligned} \quad \text { decoupling principle }
$$

- Comments
$\checkmark$ The first AMP-like method was derived by Kabashima for CDMA detection [Kabashima 03] and later derived by Donoho et. al for compressed sensing [DMM09].
$\checkmark$ For i.i.d. Gaussian A, AMP is proved to be asymptotically Bayesian optimal and rigorously analyzed via state evolution (SE) [BM11]
$\checkmark$ For general matrices A, AMP may diverge [BM11]


## Relation to AMP

## ■ An EP Perspective on AMP

AMP iteratively decouples the original vector inference problem to scalar inference problems

$$
\mathbf{y}=\mathbf{A x}+\mathbf{n} \quad \text { decoupled }\left\{\begin{array}{l}
R_{1}=x_{1}+\tilde{n}_{1} \\
\vdots \\
R_{N}=x_{N}+\tilde{n}_{N}
\end{array} \quad\right. \text { decoupling principle }
$$

- Comments
$\checkmark$ The first AMP-like method was derived by Kabashima for CDMA detection [Kabashima 03] and later derived by Donoho et. al for compressed sensing [DMM09].
$\checkmark$ For i.i.d. Gaussian A, AMP is proved to be asymptotically Bayesian optimal and rigorously analyzed via state evolution (SE) [BM11]
$\checkmark$ For general matrices A, AMP may diverge [BM11]
$\checkmark$ Vector AMP (VAMP) converges for right-rotationally invariant matrices [RSF16]



## EP Perspective on VAMP

## - Vector-form Factor Graph


vector-form factor graph

## EP Perspective on VAMP

## - Vector-form Factor Graph


vector-form factor graph

$$
\begin{aligned}
& m_{A \rightarrow x}\left(x_{i}\right)=\frac{\operatorname{Proj}\left[p_{0}\left(x_{i}\right) m_{x \rightarrow A}\left(x_{i}\right)\right]}{m_{x \rightarrow A}\left(x_{i}\right)}=\mathcal{N}\left(x_{i} ; m_{i \rightarrow A}, v_{i \rightarrow A}\right) \quad \text { This is exa } \\
& m_{x \rightarrow B}\left(x_{i}\right)=m_{A \rightarrow x}\left(x_{i}\right) \\
& m_{B \rightarrow x}\left(x_{i}\right)=\int \mathcal{N}\left(\mathbf{y} ; \mathbf{A x}, \sigma^{2} \mathbf{I}\right) \prod m_{x \rightarrow B}\left(x_{i}\right) d x_{j \neq i}=\mathcal{N}\left(x_{i} ; m_{B \rightarrow i}, v_{B \rightarrow i}\right) \\
& m_{x \rightarrow A}\left(x_{i}\right)=m_{B \rightarrow x}\left(x_{i}\right)
\end{aligned}
$$

This is exactly the MMSE form of VAMP
[RSF16]

## A Unified Perspective

## ■ An EP Perspective on AMP



- The EP perspective of AMP and VAMP:
$\checkmark$ Explicitly establishing the relationship between AMP
$\checkmark$ Simplifying the extension of AMP to the complex-valued AMP (simply using circularlysymmetric Gaussian) [MWKL15b]
$\checkmark$ Providing a unified view of AMP and VAMP (derived from scalar EP [MWKL15a] and vector EP [RSF16], respectively )


## NonLinear Observations

## - Background



- The measurements are often obtained in a nonlinear way
- one-bit (quantized) compressed sensing
- phase retrival
- logistic regression
- ....

Inference on Generalized linear model (GLM)

## NonLinear Observations

Basic Idea:
Is it possible to transform the nonlinear inference problem to linear inference problems?

## NonLinear Observations

## Basic Idea:

Is it possible to transform the nonlinear inference problem to linear inference problems?


## A Unified Inference Framework for GLM

## - Two Equivalent Factor Graphs of GLM


(a) factor graph of GLM
(b) Equivalent factor graph of GLM

## A Unified Inference Framework for GLM

## - Two Equivalent Factor Graphs of GLM


(a) factor graph of GLM
(b) Equivalent factor graph of GLM

- Decoupling GLM into SLM via EP


$$
\begin{aligned}
& m_{z \rightarrow p}^{t-1}(\mathbf{z}) \propto N\left(\mathbf{z} ; z_{A}^{\text {ext }}(t-1), v_{A}^{\text {ext }}(t-1) I\right) \quad \begin{array}{c}
\text { EP message passing } \\
\text { (t-th iteration) }
\end{array} \\
& m_{p \rightarrow z}^{t}(\mathbf{z}) \propto \frac{\operatorname{Proj}_{\Phi}\left(p(\mathbf{y} \mid \mathbf{z}) m_{z \rightarrow p}^{t-1}(\mathbf{z})\right)}{m_{z \rightarrow p}^{t-1}(\mathbf{z})} \propto N\left(\mathbf{z} ; z_{B}^{\text {ext }}(t), v_{B}^{\text {ext }}(t) I\right)
\end{aligned}
$$

## A Unified Inference Framework for GLM

## - Two Equivalent Factor Graphs of GLM


(a) factor graph of GLM
(b) Equivalent factor graph of GLM

- Decoupling GLM into SLM via EP


$$
\begin{aligned}
& m_{z \rightarrow p}^{t-1}(\mathbf{z}) \propto N\left(\mathbf{z} ; z_{A}^{\text {ext }}(t-1), v_{A}^{\text {ext }}(t-1) I\right) \quad \begin{array}{c}
\text { EP message passing } \\
(t \text {-th iteration) }
\end{array} \\
& m_{p \rightarrow z}^{t}(\mathbf{z}) \propto \frac{\operatorname{Proj}_{\Phi}\left(p(\mathbf{y} \mid \mathbf{z}) m_{z \rightarrow p}^{t-1}(\mathbf{z})\right)}{m_{z \rightarrow p}^{t-1}(\mathbf{z})} \propto N \quad\left(\mathbf{z} ; z_{B}^{\text {ext }}(t), v_{B}^{\text {ext }}(t) I\right)
\end{aligned}
$$

## A Unified Inference Framework for GLM

## - Decoupling GLM into SLM via EP



Pseudo SLM


MMSE module B

## A Unified Inference Framework for GLM

## $\square$ Decoupling GLM into SLM via EP



Pseudo SLM


MMSE module B

- The original GLM is iteratively decoupled into a sequence of simple SLM problems


Note: The computation of posterior mean and variance of $z$ in module A may differ for different SLM inference methods.

## A Unified Inference Framework for GLM

## - Decoupling GLM into SLM via EP



Pseudo SLM


MMSE module B

- The original GLM is iteratively decoupled into a sequence of simple SLM problems


Universal Algorithm Design [MWZ18]

## Unified Inference Framework for GLM

- Initialization $\mathbf{z}_{A}^{\text {ext }}(0), \nu_{A}^{\text {ext }}(0)$
- For $t=1$ : T, Do

1. Perform component-wise MMSE
2. Update $\mathbf{z}_{B}^{\text {ert }}(t), v_{B}^{\text {ert }}(t)$
3. Perform SLM inference one or more iterations
4. Compute $\mathbf{z}_{A}^{\text {post }}(t), v_{A}^{\text {post }}(t)$ and then update $\mathbf{z}_{A}^{\text {ett }}(t), v_{A}^{\text {ent }}(t)$

Note: The computation of posterior mean and variance of $z$ in module A may differ for different SLM inference methods.
[MWZ18] X. Meng, S. Wu and J. Zhu, "A unified Bayesian inference framework for generalized linear model,"
IEEE Signal Processing Letters, vol. 25, no. 3, Mar. 2018.

## A Unified Inference Framework for GLM

## $\square$ From AMP to Gr-AMP



The Gr-AMP Algorithm

- Initialization $\mathbf{z}_{A}^{\text {ext }}(0), v_{A}^{\text {ext }}(0)$
- For $\mathrm{t}=1$ : T, Do

1. Perform component-wise MMSE
2. Update $\mathbf{z}_{B}^{\text {ext }}(t), v_{B}^{\text {ext }}(t)$
3. Perform AMP for TO iterations
4. Compute $\mathbf{z}_{A}^{\text {post }}(t), v_{A}^{\text {post }}(t)$ and then update $\mathbf{z}_{A}^{\text {ext }}(t), v_{A}^{\text {est }}(t)$

## $\square$ From AMP to Gr-AMP



## - Relation of Gr-AMP to GAMP

## GLM

$\checkmark$ Gr-AMP is precisely GAMP when T0 $=1$ and thus provides an EP perspective on GAMP [Mwz18] In essance, GAMP first transforms nonlinear model to linear model using EP and then directly apply AMP on the linear model in each iteration.
$\checkmark$ This perspective provides a concise derivation of GAMP using EP as in [MWZ18]
$\checkmark$ A more flexible message passing schedule: double-loop implementation.

## A Unified Inference Framework for GLM

## $\square$ From AMP to Gr-AMP

| AMP |
| :---: | :---: |
| (T0 iterations) |
| Module A |

## - Relation of Gr-AMP to GAMP

## The Gr-AMP Algorithm

- Initialization $\mathbf{z}_{A}^{e x A}(0), v_{A}^{e x t}(0)$
- For $\mathrm{t}=1$ : T, Do

1. Perform component-wise MMSE
2. Update $\mathbf{z}_{B}^{\text {ext }}(t), v_{B}^{\text {ext }}(t)$
3. Perform AMP for T0 iterations
4. Compute $\mathbf{z}_{A}^{\text {post }}(t), v_{A}^{\text {post }}(t)$ and then update $\mathbf{z}_{A}^{\text {est }}(t), \nu_{A}^{\text {eet }}(t)$
$\checkmark$ Gr-AMP is precisely GAMP when T0 $=1$ and thus provides an EP perspective on GAMP [MWZ18] In essance, GAMP first transforms nonlinear model to linear model using EP and then directly apply AMP on the linear model in each iteration.
$\checkmark$ This perspective provides a concise derivation of GAMP using EP as in [MWZ18]
$\checkmark$ A more flexible message passing schedule: double-loop implementation.


- Quantized CS for 1,2,3-bit cases:
$N=1024, M=512, S N R=50 \mathrm{~dB}$
- Gr-AMP and GAMP converge to the same performance for i.i.d. Gaussian A
- Total number iterations of AMP are about the same while the number of MMSE operations is reduced for Gr-AMP.


## A Unified Inference Framework for GLM

- From VAMP/SBL to Gr-AMP/Gr-SBL

| VAMP/SBL <br> (T0 iterations) <br> Module A | $\mathbf{z}_{A}^{\text {ext }}(t-1), v_{A}^{\text {ext }}(t-1)$ |
| :--- | :--- |
|  | $\mathbf{z}_{B}^{\text {ext }}(t), v_{B}^{\text {ext }}(t)$ | | Component-wise |
| :---: |
| MMSE |
| Module B |

The Gr-VAMP/Gr-SBL Algorithm

- Initialization $\mathbf{z}_{A}^{\text {ext }}(0), v_{A}^{\text {ext }}(0)$
- For $\mathrm{t}=1$ : T, Do

1. Perform component-wise MMSE
2. Update $\mathbf{z}_{B}^{\text {ett }}(t), v_{B}^{\text {ett }}(t)$
3. Perform VAMP/SBL for T0 iterations
4. Compute $\mathbf{z}_{A}^{\text {post }}(t), v_{A}^{\text {post }}(t)$ and then update $\mathbf{z}_{A}^{\text {ext }}(t), v_{A}^{\text {est }}(t)$

## A Unified Inference Framework for GLM

## - From VAMP/SBL to Gr-AMP/Gr-SBL



## The Gr-VAMP/Gr-SBL Algorithm

- Initialization $\mathbf{z}_{A}^{\text {ext }}(0), v_{A}^{\text {ext }}(0)$
- For $\mathrm{t}=1$ : T, Do

1. Perform component-wise MMSE
2. Update $\mathbf{z}_{B}^{\text {ext }}(t), v_{B}^{\text {ext }}(t)$
3. Perform VAMP/SBL for TO iterations
4. Compute $\mathbf{z}_{A}^{\text {post }}(t), v_{A}^{\text {post }}(t)$ and then update $\mathbf{z}_{A}^{\text {ett }}(t), v_{A}^{\text {ext }}(t)$

(a) Number of Iterations $(\kappa(A)=1)$

(b) Number of Iterations $(\kappa(A)=100)$


Performance of de-biased NMSE for 1-bit CS $\checkmark N=512, M=2048, S N R=50 \mathrm{~dB}$, sparse ratio 0.1 $\checkmark$ T0 $=1$ for both Gr-VAMP and Gr-SBL $\checkmark$ When conditional number is 1 , all kinds of algorithms performs nearly the same. $\checkmark$ As the condition number increases, the recovery performances degrade smoothly for Gr-VAMP/GVAMP/Gr-SBL while both Gr-AMP and GAMP diverge for even mild condition number, which show the robustness of Gr-VAMP/Gr-SBL/GVAMP for general matrices.
X. Meng, S. Wu and J. Zhu, "A unified Bayesian inference framework for generalized linear model," IEEE Signal Processing Letters., vol. 25, no. 3, Mar. 2018.

Code available: https://github.com/mengxiangming/glmcode

## Conclusions

- A high-bias low-variance introduction to approximate Bayesian inference
- An overview of variational inference framewrok
- A tutorial introducition of expection propagation
- A unified EP perspective on AMP and its extensions.


## BeFQHe円CQS

- [DMM09]Donoho, Maleki, Montanari. "Message-passing algorithms for compressed sensing." Proceedings of the National Academy of Sciences 106.45 (2009): 18914-18919.
- [DMM10] Donoho, Maleki, Montanari, "Message passing algorithms for compressed sensing: I. motivation and construction." Proc IEEE ITW, 20110
- [BM11] Bayati, Montanari. "The dynamics of message passing on dense graphs, with applications to compressed sensing." IEEE Transactions on Information Theory 57.2 (2011): 764-785.
- [Rangan10] Rangan, Sundeep. "Estimation with random linear mixing, belief propagation and compressed sensing." Information Sciences and Systems (CISS), 2010 44th Annual Conference on. IEEE, 2010.
- [Tanaka 02] Tanaka, Toshiyuki. "A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors." IEEE Transactions on Information theory 48.11 (2002): 2888-2910.
- [Minka01] Minka, Thomas P. "Expectation propagation for approximate Bayesian inference." 2001
- [Minka01b]Minka, Thomas P. "A family of algorithms for approximate bayesian inference", (thesis) 2001.
- [Opper05]] Opper, Manfred, and Ole Winther. "Expectation consistent approximate inference." Journal of Machine Learning Research 6.Dec (2005): 2177-2204.
- [Rangan11] Rangan, "Generalized approximate message passing for estimation with random linear mixing." Proc IEEE ISIT 2011
- [RSF16] Rangan, Schniter, Fletcher, "Vector approximate message passing", 2016
- [SRF16] P. Schniter, S. Rangan, and A. K. Fletcher, "Vector approximate message passing for the generalized linear model," in Proc. 50th Asilomar Conf. Signals, Syst. Comput., Nov. 2016, pp. 1525-1529.
- [Kabashima 03] Kabashima Y. A , " CDMA multiuser detection algorithm on the basis of belief propagation", Journal of Physics A: Mathematical and General, 2003, 36(43)
- [KMSSZ12] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová, "Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices," Journal of Statistical Mechanics: Theory and Experiment, vol. 2012, no. 08, p. P08009, 2012.
- [MWKL15a] X. Meng, S. Wu, L. Kuang, and J. Lu, "An expectation propagation perspective on approximate message passing," IEEE Signal Process. Lett., vol. 22, no. 8, pp. 1194-1197, Aug. 2015.
- [MWKL15b] X. Meng, S. Wu, L. Kuang, and J. Lu, " Concise derivation of complex Bayesian approximate message passing via expectation propagation," arXiv preprint arXiv:1509.08658, 2015.
- [WKNLHDQ14] S. Wu, L. Kuang, Z. Ni, J. Lu, D. Huang, and Q. Guo, "Low-complexity iterative detection for large-scale multiuser MIMO-OFDM systems using approximate message passing," IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 902-915, Oct. 2014.


## Be\&eren ces

- [MWZ18]X. Meng, S. Wu and J. Zhu, "A unified Bayesian inference framework for generalized linear model," IEEE Signal Process. Lett., vol. 25, no. 3, Mar. 2018.
- [MZ18] X. Meng, and J. Zhu, "Bilinear Adaptive Generalized Vector Approximate Message Passing," arXiv preprint arXiv:1810.08129, 2018
- [PSC14a] J. T. Parker, P. Schniter, and V. Cevher, "Bilinear generalized approximate message passing-Part I: Derivation," IEEE Trans. Signal Process., vol. 62, no. 22, pp. 5839-5853, Nov. 2014.
- [PSC14b] J. T. Parker, P. Schniter, and V. Cevher, "Bilinear generalized approximate message passing-Part II: Applications," IEEE Trans. Signal Process., vol. 62, no. 22, pp. 5854-5867, Nov. 2014.
- [PS16] J. T. Parker and P. Schniter, "Parametric bilinear generalized approximate message passing," IEEE J. Sel. Topics Signal Process., vol. 10, no. 4, pp. 795-808, 2016.
- [KKMSZ16] Y. Kabashima, F. Krzakala, M. M' ezard, A. Sakata and L. Zdeborov' a, "Phase transitions and sample complexity in bayesoptimal matrix factorization," IEEE Trans. Inf. Theory, vol. 62, no. 7, pp. 4228-4265, 2016.
- [SRF] P. Schniter, S. Rangan, and A. K. Fletcher, "Vector approximate message passing for the generalized linear model," in Proc. 50th Asilomar Conf. Signals, Syst. Comput., Nov. 2016, pp. 1525-1529.
- [ML17] J. Ma and L. Ping, "Orthogonal AMP," IEEE Access, vol. 5, pp. 2020-2033, 2017.
- [HWJ17] H. He, C. K. Wen, and S. Jin, "Generalized expectation consistent signal recovery for nonlinear measurements," in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2017, pp. 2333-2337.
- [Yedidia et al 05] Yedidia J S, Freeman W T, Weiss Y. Constructing free-energy approximations and generalized belief propagation algorithms[J]. IEEE Transactions on information theory, 2005, 51(7): 2282-2312.
- [Yedidia et al 02] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief propagation and its generalizations. Technical Report TR2001-22, Mitsubishi Electric Research Labs, January 2002.
- [Opper\&Saad 01] M. Opper and D. Saad. Adaptive TAP equations. In M. Opper and D. Saad, editors, Advanced mean field methods: Theory and practice, pages 85-98. MIT Press, 2001.
- [Hoffman et al 2013] Hoffman, Matthew D., et al. "Stochastic variational inference." The Journal of Machine Learning Research 14.1 (2013): 1303-1347.
- [M'ezard et al 87] M. M' ezard, G. Parisi and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).
- [Bishop06] Bishop C M. Pattern recognition and machine learning[M]. springer, 2006.
- [Mehta et al 19] Mehta P, Bukov M, Wang C H, et al. A high-bias, low-variance introduction to machine learning for physicists[J]. Physics reports, 2019.


## Thank You

## ありがとうございます

Q\＆A

