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B Mathematical Formulation
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Background

B Mathematical Formulation

mixing matrix % noise
i \ /f
y=Ax+n|——>Y
Unknown - 4 Known Observatuons
what is x?
Linear Inverse Problems
B Examples of A
. B T k is a vector of size r*and P is
Super-resolution A=10®k)P a permutation matrix that reorders a vectorized image into patches
Denoising A=1
For a 2D blurring kernel K =rel ; A and A,
Deblurring A = Ar R AC apply a 1D convolution with kernels ¢ and r, respectively
Colorization (AX)i = K P; k' = (3 373 ) and p; 1s the 3-valued i-th pixel of the original color image

Fundamental Challenge:

Due to incomplete/noisy measurements, the image restoration problem is ill-posed!



A Bayesian Perspective

B Bayesian Perspective for Image Restoration

Inverse Problems
f 2

X — | f(x)

Unknown g )

__)y

Known Observations

W

—)

\_

f Bayesian Inference

Posterior Prior Likelihood
p(x)p(y | x)
p(x|y) =
p(y)
Bayes’ rule

~

/

Thomas Bayes (1702-1761)



A Bayesian Perspective

B Bayesian Perspective for Image Restoration

Inverse Problems f Bayesian Inference \
( h
Posterior Prior Likelihood
ey T )| PPy %)
nknown g y Known Observations p(X ‘ y) —
what is x? p(y) | i’
K Bayes’ rule j Thoméséyés (1702-1761)
B Bayesian Learning Framework
KNOWLEDGE & DATA
QUESTION
-
l Prior l Likelihood Posterior

Make assumptions Discover patterns Predict & Explore

O-0-0 [ mmmm

Bayesian Learning Framework [David Blei 2016]



A Bayesian Perspective

B Key idea

You can easily recognize

The more you know a priori | o sndesian -
the less you need!




A Bayesian Perspective

B Key idea

You can easily recognize
m

The more you knOW a priori omeone you are familiar with
the less you need!

How to obtain good
prior knowledge?




Classic Approach: Sparsity Modeling

B Sparsity Modeling

Wavelet
x 10* Coefficients
2.
1.5} ] _ _ _
e Sparsity: The target signal x is sparse, i.e., most

elements are zero (under some transformation)

0.5}

0O 2 4 6 8 10 Throwing away 97.5%
x 10° of the coefficients

(a) (b) (c)
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Classic Approach: Sparsity Modeling

B Sparsity Modeling

Wavelet
x 10* Coefficients

e Sparsity: The target signal x is sparse, i.e., most
elements are zero (under some transformation)

0 2 4 6 8 10  Throwing away 97.5%
x 10° of the coefficients

(a) (b) (c)

* Compressed Se“Si“? Sparse Regularization Sparsity Modeling & Compressed Sensing
X = arg min—||y — AXH% . The standard L, sparsity is equivalent to Laplace
Commonly used 7(x) x 2 prior distribution.
| - More complicated priors, e.g., group Lasso,
L, sparsity (Lasso) r(x) = |[|x H1 . .
structured sparsity, can be used to improve
Group Lasso r(x) = Z ||xg||2
p performance.
Tree-structured/Graph sparsity . However, such hand-crafted priors might still fail

Structured Sparsity Total Variation Regularization ...

to capture the rich structure in natural signals.



Classic Approach: Sparsity Modeling

Is sparse prior good enough?
4

“What | cannot create, | do not understand” ,\ -
——Richard Feynman A s\j

-3
s VO —

N J ‘QVI :
. ¥ :
s .
%3 = |
m\\ W
N V) ‘\_ ’ ‘-,
W »
| .
o)
ol

Can we create realistic images with

a sparse prior ?
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A New Era: Generative Al

by ChatGPT-4 by DALL-E 2 by DALL-E 2



A New Era: Generative Al

Both are Al generated faces....



A New Era: Generative Al

Motivation: Can we use generative
models as prior for image restoration?




A Tutorial Introduction to Generative Models

B Generative Models _ _
Generative Learning

Train

Generative Models

Samples from a Data Distribution Neural Network

Sample

Generative Models —

New Samples

Credit to: https://cvpr2022-tutorial-diffusion-models.github.io
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A Tutorial Introduction to Generative Models

B Different types of generative models

GAN: Adversarial ! = _’Discriminator 7 Generator N
. X
training D(x) G(z)

VAE: maximize x _»% s _| Decoder | !
variational lower bound q¢(z|x) po(x|z)
Flow-based models: . Flow > Z > Inllfrse —
Invertible transform of f(x) [ (2)

distributions
Diffusion models:' X0 X1 | Xo .- |z

Gradually add Gaussian - (- - Lo
noise and then reverse

Diffusion Models: Emerging as most powerful generative models



An Old Result

B Sampling with Langevin Dynamics

Given score function of p(x), one can obtain samples iteratively as follOWS . parisi 1981 welling, Max; Teh, Yee Whye 2011, Neal 2010

Xii1 < X; + eV logp(x)H V2ez;, i=0,1,---,K

! \

step size  score function Gaussian noise

X - converges to samples from p(x) when e — 0,K — oo

19



An Old Result

B Sampling with Langevin Dynamics

Given score function of p(x), one can obtain samples iteratively as follOWS . parisi 1981 welling, Max; Teh, Yee Whye 2011, Neal 2010

X1 < X; + €V log p(x) \/Z_ezi, 1=0,1,---, K

! \

step size  score function Gaussian noise

X - converges to samples from p(x) when e — 0,K — oo

Score vector field Vlog p(x) for Gaussian Mixture

Bl score of GMM

B A Toy Example

I - / Vx log p(x)
wo-Gaussian hMixture \— Score Function: Vector Field
“*‘Q:\\

20



How to Estimate Score From Data Samples

B Key Idea
Approximating the score function by a neural network

Sg(x) ~ Vxlog p(x)

Neural network score function

21



How to Estimate Score From Data Samples

B Key Idea
Approximating the score function by a neural network

sg(x) ~ Vyxlogp(x)

Neural network score function

; Network Training
unknown target'
) [V x Jog p(x))— so(x)||3]

22



How to Estimate Score From Data Samples

B Key Idea
Approximating the score function by a neural network

sg(x) V« log p(x)

Neural network score function

unknown target'
so(x) ]3]

; SCOre-MatChing A. Hyvarinen 2005

No explicit dependance on unknown p(x)

1
IEp(x) _tr(sze;(x)) +5 Ise (x)||5 | Valid loss




How to Estimate Score From Data Samples

B Key Idea
Approximating the score function by a neural network

sg(x) ~ Vyxlogp(x)

Neural network score function

; Network Training

unknown target'
so(x) ]3]

Challenging for the
high-dimensional case!

24



Challenges of High Dimensional Score Estimation

B [llustration via Two-Gaussian Mixture
Estimated scores are only accurate in high density regions.

Data scores Estimated scores

QQQQQQQQ

Data density

Original distribution
px K

l ......
WA S

"
A X NN Y S

Figure credit to Yang Song



Challenges of High Dimensional Score Estimation

B [llustration via Two-Gaussian Mixture
Estimated scores are only accurate in high density regions.

Data scores Estimated scores

v e ew ey e e = e e o e vt e e e e awe e
'\ VU QR IAA N AT AT

Data density

'\\oooo’o' QQQQQ

SR N Y
“Accurate °

-

Original distribution

pxy ReSREGESe RN S
'\\chvot‘ IN VN v v
kR eSS, ¥ 9 P P In & & ¢« ¢ o
: :........
| ~Accurate |
Qe & % e
(P20 RN S TR
Estimated scores are accurate everywhere for noise perturbed data
_ Perturbed density Perturbed scores Estimated scores
Corrupted noise AR R A S S RR D ERREa
[\\\\\\\\\\\ S G S RGN R S Y ’| '\\\\\\\\\\\\ WA A IR W P B ’I
'\\\\\\N\\‘\ - : N : :| '\\\\\\\sss\\ : : : . a : :l
: il bl B i Mt g
X' =X-H/pz O e i G
'\\\\::-..-.o,/pptaoas\\| I\\\\\:..-.-z///laaossxl
Q::: \C-.-//ra:oéc\\\: Q:::\ C.-,///af é\\\:
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. i ’ \ :
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s B L 5o B \\\\\\\\\\| L . --.\\\\\\\\\\|
ga.....s‘\\\\\\\s§§§: :, ...... \\\\\\\Q%Q:
Z ~ N(0,1) o iiiisotiSSaNANANN ELCIIIIISIIIISSNNNNAIL Figure oreditto Yang Song



Challenges of High Dimensional Score Estimation

B [llustration via Two-Gaussian Mixture
Estimated scores are only accurate in high density regions.

Data density Data scores Estimated scores
e e S T R R R R B \\\\\\\\\ SRR S T
\\“\\\\\\\\ S8 > P K S \\ \\\\\\\\ . 2, 9. P I
\ NG et e e e w w e . . \\ \\\\\\\s\ eyl ' . A B
. B - Accurate NNNNNNSSZZ 21 Accurate |
\\ t‘.._...,..-. . i W S N B S MR
0 51\ 1 sl - . )Y B 0\ TN R
\\“l‘ - oy g o DY \\\\\\\\‘ oooooooooo
b 0 R o o B A N T R - O, T T Ve
- - - - - V) O (I / \ A S W
Original distribution R .lnaccqr;ate; (B NN ~|.‘naCCUFate; RS
UL R T A A L T T L ’ -
R A A A Pl S S, ST < R T A N Y RN
p(X) R e I B RS SR R FU
NN @000 e SO T G
N . ,,,,,,s:‘\§§ N 00 “‘QQ{Q
- « @ D W AR A S e G - - \\
.Accurate..---_._._._\u\ .Accurate..--..\:\\\\\\
o o s‘\’.ﬁ&‘-“\ \ s 0 \s\\\\\\\\\\
> o \\\\\\\\“\\ 5 » \\\\\\\\\\\\
S S \ ........ ~ \\\\\\\\\\\

Estimated scores are accurate everywhere for noise perturbed data

how to choose an appropriate noise scale / for the perturbation?

Large noise: cover the low-density regions well, but different from the original distribution

Small noise: similar to the original distribution, but does not cover low-density regions well



One Smart Solution: Annealing

B Key Idea

Annealing: using multiple noise scales { ﬁt}thl for the perturbation!
X, =X+ pZ O0<p<p<—<p

28



One Smart Solution: Annealing

B Key Idea

Annealing: using multiple noise scales { ﬁt}thl for the perturbation!
X, =X+ pZ O0<p<p<—<p

pp(X,) = J p(X)N(X, | X, f)dx

Network Training
Using neural network to estimate the score thlog pﬂt(xt) of each noise-perturbed distribution pﬁt(xt)

So(X;, 1) & Vy log py(X,) V1

Estimated Score True Score

T
Loss function: ) AE, [V 1og pj(x,) — sy(x,, 1)||?

=1 29



One Smart Solution: Annealing

B Key Idea

Annealing: using multiple noise scales { ,Bt};r=1 for the perturbation!
X, =
[

samples of x,

estimated
scores

Figure credit to Yang Song
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B A Big Picture

Forward Process
_ . ‘ .

Putting ldeas Together

X =X, +fz 0 < By <py< - <py

Forward diffusion process (fixed) A sequence of noise levels

- >

31



Putting ldeas Together

B A Big Picture
X =X, + 2, 0<py<py<-<py

Forward diffusion process (fixed) A sequence of noise levels

-.... o

Reverse Process

l Score function

Approximated by neural network

SH(Xta [ )

Annealed Langevin dynamics '
Reverse it!




Different Types of Diffusion Models

* Noise Conditional Score Network (NCSN) Yang Song, Stefano Ermon 2019

Forward: X, = Xo + )z,

Reverse: X =X, +a,V, logp,(x)+4/2a,2;

* Denoising Diffusion Probabilistic Models (DDPM) Jonathan Ho etal 2020
Forward:  x; = vogXs—1 + V1 — €1

Reverse: xi;_1 = xt + (1 — o)V, log p(x¢)) + Brze.

i
\/ Ot (
e Flow-Matchi ng Models Yaron Lipman 2022 Xingchao Liu et al 2022, Nanye Ma et al 2024
Forward: Xy = aiXqg + b€

&t bt(dtbt — atbt)

Reverse: Xt—1 =Xt — (‘a—txt | " Vx, log P(Xt))At
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1. Image Restoration and Diffusion Models
2. Linear Image Restoration with DM
3. Nonlinear Image Restoration with DM



Generative Image Restoration

B A New Paradigm For Image Restoration

(- i

y Ax+n| —>Y

Unknown Known Observatnons

kwhat y

Using Generative Model as Prior

B T e
........
. .

.

. e

Bayesian Inference

Posterior Prior  Likelihood
px)p(y | x)
px|y) =
p(y)

.. -
'''''
------------------------------------------------------------------------------------------------

Challenge: How can we sample from the posterior p(x|y) 2



B Posterior Sampling

Prior Sampling

Generative Image Restoration

k k
NCSN: Xt—l — Xt + at thogpﬁt(xt T at {

1
DDPM. Xt—1 :—'(Xt + (1 — O Xt lng(Xt) + ,BtZt,

NGT
Xt lOg p(xt) A15

Flow-based: x;_1 =x; — (

Available From Pre-trained
Diffusion Models

36



B Posterior Sampling

Prior Sampling

Bayes’ Rule

Generative Image Restoration

k k
NCSN: Xt—l — Xt + at thogpﬁt(xt T at {

1
DDPM. Xt—1 :—'(Xt + (1 — O Xt lng(Xt) + ,BtZt,

Vv
Xt lOg p(xt) A15

Flow-based: x;—1 =x; — (
Vilogp(x | y) = V,logp(x) + V,log p(y[x)

Available From Pre-trained
Diffusion Models

Posterior Score Prior Score Likelihood Score

37



Generative Image Restoration

k k
NCSN: Xt—l — Xt + at thogpﬂt(xt T at {

DDPM: x; 1 =

B Posterior Sampling

Available From Pre-trained
Diffusion Models

Prior Sampling X + (1 — oy )Vx, log p(x¢)) + Bizs,

T

Flow-based: x;_1 =x; —

: t
—X¢ Vix, log p(x¢)]) A

p( )p(y ‘ X) V. logp(x|y) = V. logpx)+ V, ]ogp(y|x)

p (y) ' Posterior Score Prior Score Likelihood Score
k

NCSN:  Xb_ | =X} + a(V, log p,(x)+ V, log p, (v | X))+ 20,2}

Bayes’ Rule px|y) =

Posterior Samplin
pling DDPM: x,_; =—— (x¢ + (1 — ) Vs, log p(3:)+ Vi, log p(y|x2))) + Bz,

NGT

Flow-based: x;_1 =x; — (—X; )th log p(x¢)+Vx, log p(y|xt))) A




Generative Image Restoration

k k
NCSN: Xt—l — Xt + at thngﬂt(Xt T at {

B Posterior Sampling

Available From Pre-trained
Diffusion Models

. . 1
Prior Sampling DDPM: x;_1 =——(x¢ + (1 — o4 [Vx, log p(x¢)) + Bez,
\V Ot
' b (asby — azb
Flow-based: Xt—1 =Xt — (%Xt | t(at ta - t) Xt logp(xt) At
L {

p( )p(y ‘ X) V. logp(x|y) = V. logpx)+ V, ]ogp(y|x)

p (y) ' Posterior Score Prior Score Likelihood Score

NCSN: XI;_I = X" + a( Vi logps(x)+ Vi log ps(y | xp)+ The remaining goal is to
Compute V_log p(y | x)

Bayes’ Rule px|y) =

Posterior Samplin
pling DDPM: x;_; :i(xt + (1 — 04) Vx, log p(x¢)+Vx, log p(y|x:))

Ja

Flow-based: x;_1 =X; —




Generative Image Restoration

B Key Challenge

The likelihood score thlog p(y | X)) is intractable except t=0, even for the linear case y = Ax,+n

py | x,) = J'P(y | X0, X)P(Xq | X)dX,
Gauss

iIntractable!
= |p(y | Xo) P(Xo | Xz)Xo,

Tweedie’s formula: (Robbins, 1992; Stein, 1981)

1
%0(x,) = E[x, | x| = (xt + (1 —a() Vy log pt(Xt)>

a(t)

Graphical Model

40



Generative Image Restoration

B Key Challenge

The likelihood score thlog p(y | X)) is intractable except t=0, even for the linear case y = Ax,+n

py | x,) = J'P(y | X0, X)P(Xq | X)dX,
Gauss

iIntractable!
= |p(y | X()) P(Xo | Xz)Xo,

Tweedie’s formula: (Robbins, 1992; Stein, 1981)

1
%o(x,) := E[x, | X,] = (xt + (1 —a() Vy log pt(Xt)>

a(t)

Graphical Model

B Most Popular Solutions

DPS Chung et al. (2022a)

ply | x)~ N (Aﬁo(Xt); 021)
» Vilogp(y|x) =

PGDM Song et al. (2022) Xo(X,) lOg ]5 (y ‘ ﬁO(Xt))

p(y|x) = N (AR\(X,); 7;AAT + 67T) The Jacobian needs back-propagation through
diffusion models, which is time-consuming

41



One Simple Solution: DMPS

B A Simple Alternative Approximation intractable

piy | x,) = [p<y | XoJp(xo | %),

Motivation: Is it possible to obtain a closed-form approximation for p(x, | x,)?

Gaussian Intractable

closed-form?
IP(Xt | X0)p(Xp)dX

p(XO | Xt) —



One Simple Solution: DMPS

B A Simple Alternative Approximation intractable

piy | x,) = [p<y | XoJp(xo | %),

Motivation: Is it possible to obtain a closed-form approximation for p(x, | x,)?

Gaussian Intractable

X, | X X
p(Xy | X)) = P | %) closed-form?

J p(X; | Xo)p(Xp)dx,

e Assumption 1
The prior p(XO) IS non-informative w.r.t. p(Xt ‘ XO)

Gaussian

Closed-Form
P (X() | Xt) X P (Xt | XO) Gaussian Approximation

Asymptotically accurate when the perturbed noise is negligible




50

45 |

One Simple Solution: DMPS

B A Simple Alternative Approximation

Assumption 1 is asymptotically accurate when the perturbed noise is negligible, i.e., f is small

Verification of p(xg|z;) o< p(a|xy)

102

exact

pseudo

variance

100

200

step: t

300 400 500

Verification of p(xg|z;) o< p(a¢|xp)

snnnnnnn V

o

exact

Vpseudo

400

A Toy Example with a Gaussian p(x,)

500



One Simple Solution: DMPS

" Closed-form noise-perturbed likelihood score V log p(y|x,)

Theorem 1. (noise-perturbed pseudo-likelihood score, DDPM) For DDPM, under Assumption|l, the
noise-perturbed likelihood score Vx, log p(y | x¢) fory = Ax + n in (1) admits a closed-form

th 1ng(y | xt) = th logﬁ(y \ xt)
1

1—a -1 1
\/C_Y_tAT(JQI — ‘AAT) (v T Ax) (10)

B Efficient Computation via SVD

Theorem 2. (efficient computation via SVD) For DDPM, the noise-perturbed pseudo-likelihood
score Vx, log p(y | x¢) in (L0) of Theorem|l can be equivalently computed as

vXt lng(y | xt) = th lOgﬁ(y ‘ xt)

1 1

Vay Var
where A = UX V" is the SVD of A and ¥? denotes element-wise square of X.

_ w1
= VZ(021+ 1 O‘tzz) (UTy

EVTXt), (12)

o7




One Simple Solution: DMPS

B Resultant DMPS Algorithm

Algorithm 1 DMPS (DDPM version) Algorithm 2 DMPS [flow-based version)

Input: y, A, 02 {G¢}i_1, A Input: y, A, 05, A, =1/T, )\
Initialization: x7 ~ NV (0,I), A = UXV?’ Initialization: x7 ~ NV (0,I), A = UXV?
1 fort=T1to1do 6 fort =Tto1do
2 | Draw z; ~ N(0,1)
3 | XKpa= \/z—t (x¢ \}%t so(Xt,t)) +0124 7 e s ve(xt, t) Ay
4 Vx, log p(y|x¢) 8 V. log p(y|x¢)
= Va (314 552032) U7 (y - G (F31+ 557) UT(y -
‘/57 ) ol ) be(Gebt—ath
5 Xi_1 = X¢—1 + /\1\7;1: Vx, log p(y|x¢) 9 | Xt-1=X¢-1— Lol é:at 4 log p(y|x¢) A

Output: x, Output: x




One Simple Solution: DMPS

B Experiments Results

Measurement PGDM DPS DMPS (ours) Ground Truth Measurement PGDM DMPS (ours) Ground Truth

Dataset: FFHQ

DDPM Version

(a) Super-resolution (SR) (x4) (b) Denmsmg (o =0.5)

Measurement PGDM DPS DMPS (ours) Ground Truth Measurement PGDM DMPS (ours) Ground Truth

(c) colorization (d) Deblurring (uniform)



One Simple Solution: DMPS

Measurement DPS OT-ODE DMPS (ours) Ground Truth

Infei_'ence Time: 8.02 s Inference Time: 6.40 s InferenceTime: 4.34 s

B Experiments Results

Dataset: CelebA-HQ

Flow-based Version Super
resolution

Deblurring
(Gauss)

Colorization




One Simple Solution: DMPS

B Experiments Results

Dataset: 256x 256 FFHQ Results of DDPM Version
super-resolution deblur colorization denoising
Method PSNR 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS |

DMPS (DDPM, ours)} 27.63 0.8450 0.2071 27.26 0.7644 0.2222 21.09 0.9592 0.2738 27.81 0.83777 0.2435
DPS (DDPM) 26.78 0.8391 0.2329 26.50 0.8151 0.2248 11.53 0.7923 0.5755 27.22 0.8969 0.2428

PGDM 27.60 0.8345 0.2077 26.65 0.7458 0.2196 12.15 0.8920 0.3969 27.60 0.8682 0.2425
Dataset: 256x 256 CelebA-HQ Results of Flow-based Version
super-resolution deblur colorization denoising
Methoc PSNR 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS |

DMPS (Flow-based, ours) 28.29 0.8011 0.2329 26.21 0.7235 0.2637 23.31 0.8861 0.2901 29.04 0.8166 0.2821

DPS (Flow-based) 28.05 0.7754 0.2266 22.64 0.5787 0.3403 2092 0.8061 0.3335 2793 0.7465 0.2882
OT-ODE 2771 0.7657 0.2302 25.84 0.7084 0.2573 21.67 0.8696 0.3094 22.76 0.3820 0.4778




One Simple Solution: DMPS

B Experiments Results

Running Time of DDPM Version Running Time of Flow-based Version
Method Inference Time [s] Method Inference Time [s]
DMPS (DDPM, ours) 67.02 DMPS (flow-based, ours)
DPS (DDPM) 194.42 DPS (flow-based) 8.04
PGDM 182.35 OT-DOE 6.44

The proposed DMPS is 2-3 times faster than DPS and PGDM (OT-ODE, flow version)
while achieving comparable or even better reconstruction performances

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Diffusion Model Based Posterior Sampling for Noisy Linear Inverse Problems." arXiv
preprint arXiv:2211.12343v3, 2024

Code: https://github.com/mengxiangming/dmps



https://github.com/mengxiangming/dmps
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Nonlinear Image Restoration

B Nonlinear Image Restoration

Image Restoration o Linear Case: f(x) = Ax+n
g R e Nonlinear Case: f(x)is nonlinear transformation
X —> | fix) |—Y
Unknown s v Known Observations

W

B Quantized Compressed Sensing (QCS)

N>M

sample —— compress

X (Unknown image) - " H-

sparse . . R < 17
. e Quantization is essential !

transform

Ouantizer

N

X ) [y=Q(Ax+nﬂ — Y

Unknown Known Observations

Kwhat y

transmit/store

M

receive —— decompress

Y(known observations) : Extreme case: 1-bit quantization

y = SIgn(AX + n)

52



B Basic Idea

Quantized CS with Diffusion Models

--------------------------------------------------------------------------------------------------

.

----------------------------------------------------------------------------------------------

.........
.

Diffusion Model Prior Quantized Measurements Bayesian Inference
f ‘ ; - Posterior Prior  Likelihood
p(x)p(y | x)
By ary (x|y) =
mg ~—~ X | {0Ax+m)-|y
: matching
‘ y: V, log p(x|y) = V,log p(x) + V,log p(y | X)
: Data samples —
o ortaty s Vi)
Forward diffusion process (fixed)

Data Noise

<€

Intractable!

Reverse denoising process (generative)

o X1 = X O‘t[ V x, 108 p(Xt) + thlogp(y | Xt)] +1/ 20,2,

Equation

Samples From diffusion models From quantized measurements

53



QCS-SGM: Quantized CS with SGM

B Two Assumptions of QCS-SGM

p(y | X;) = Jp(y | X0> Xl‘)p(XO | Xt)dXO
non-Gauss Intractable More difficult to obtain

= lp(y | XM IP(Xo | X)HX), closed-form approximation

e Assumption 1

The prior p(XO) IS non-informative w.r.t. p(Xt | XO)

Unlike linear case, Assumption 1 alone

p(XZ‘ ‘ X()) X p (X() ‘ Xt) does not yield closed-form p(y | Xx,)

e Assumption 2

The sensing matrix A is row-orthogonal, i.e.,

AA’ = Diagonal matrix

(Approximately) satisfied by many popular CS matrices
e.g., DFT, DCT, Hadamard, and random Gaussian matrices, etc.



QCS-SGM: Quantized CS with SGM

B Results of Pseudo-likelihood Score

e Theorem 1: Under assumptions 1 and 2, we obtain a closed-form solution to the likelihood score

Vi logp(y | x) = A"G(f,y. A, X))

where . ]
_ X
G(ﬂta ya Aa Xt) — [gla g2a IR gM] = R
72 I2 T T
exp (—MLZ’") — exp (—%) ~ Xy — Uy, j = Xy — lym
= uy = > Ym >
e (- A LR Y
\/02+,Bt2 H al H 2L~y; exp <—?>dt \/ pi m | , pi ml 5

e Corollary: In the special case of standard CS

Vi logp(y | x,) = A’ (0T + ,ﬁtzAAT)_1 (y — Ax,)

v Explain the necessity of annealing term in Jalal et al. (2021a)

Al (y — Axt)
o>+ y7

thlng(y | Xr) —

v Extend and improve Jalal et al. (2021a) in the general case



QCS-SGM: Quantized CS with SGM

B Resultant Algorithm

Algorithm 1: Quantized Compressed Sensing with SGM (QCS-SGM)

Input: {3;};_,,¢, K,y, A, 0%, quantization codewords Q and thresholds {[l,, u,)|q € Q}
Initialization: x! ~ U/ (0,1)

1 fort =1to T do

2 | o By /By

3 for k =1to K do | —
: Compute G(B;,y, A, x5 1) as (12 ; j

6 B Xf = Xf—l Oy [se(xf_l,ﬁt)_

A x?H ¢ xf<

Output: X = x%

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Quantized Compressed Sensing with Score-Based Generative Models."
ICLR 2023

Code: https://github.com/mengxiangming/QCS-SGM



QCS-SGM: Quantized CS with SGM

B Experimental Results
1-bit CS on MNIST 28 x 28  Ground Truth 1-bit CS on CelebA 64 x 64

E z,_ / 'o.q / L/f\ »ﬂn 5‘ 3 HH

: - "‘T
L ] : ®; l: §
.3{: - Ea
5 b L
A K S

LLasso

CSGM
CSGM Lasso-

BIPG
BIPG

neShot

i v ,‘ : ' - é *-.
KRB BE
£ 'y & { § 5 @ | 4‘! :bj‘*-ﬂ “
«72,/04/‘/0\6?> ﬂ'ﬂ#@@«l
(a) MNIST, M = 200, 0 = 0.05"" Me‘h‘t‘f)) CelebA, M = 4000, c = 0.001

The proposed QCS-SGM achieves remarkably better performances
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QCS SGM Quantlzed CSWlth SGM

B Experimental Results 4: -

é“ﬂ&

Results of QCS-SGM on CelebA
in the fixed budget case
(QxM = 12288)

2 ) 2
G @E@ (e

D

)62

(d) 3 bit, M = 4096
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QCS-SGM: Quantized CS with SGM

B Experimental Results M
FFHQ 256 x 256 high-resolution images Compression Ratio Y =
1-bit 2-bit 3-bit Ground Truth

PSNR: 11.64 dB, SSIM: 0.500 PSNR: 24.18 dB, SSIM: 0.695 PSNR: 26.71 dB, SSIM: 0.753

The proposed QCS-SGM can well recover high-resolution image
from only a few low-resolution (1,2,3-bit) quantized measurements

1
— <1
3
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QCS-SGM+: Improved Quantized CS with SGM

B Limitation of QCS-SGM

QCS-SGM is limited to

(approximately) row-orthogonal matrices A

Why? The pseudo-likelihood is otherwise intractable

Intractable integration



QCS-SGM+: Improved Quantized CS with SGM

B A New Perspective

pseudo-likelihood

M
P(y|xt) ~ p(y|z: = Axy) = / 11 1 (Gzeom + 7it,m) € Q7 (ym)) N (12450, C; ) di
m=1 N—————

Partition Function (nhormalization term) Likelihood Prior

The pseudo-likelihood can be viewed as the partition function of random variables n,



QCS-SGM+: Improved Quantized CS with SGM

B A New Perspective

pseudo-likelihood M
- ~ —1 o -1 i
p(y[x¢) ~ p(y|z: = Axy) / H (2t,m + fit,m) € Q7" (ym))N (0150, C; ") dik
m=1 N—— —— One fundameptal
Problem in Baypsian
Partition Function (normalization term) Likelihood Prior Inference

The pseudo-likelihood can be viewed as the partition function of random variables n,

0 the famous expectation propagation (EP) Tom Minka 2001

fg‘l(ﬁm) = l((Zm + ﬁm) € Q—l(.\"m)) f(‘((ﬁm) = 1((2771 + ﬁm) S Q—I(.Vm))

Jli) S Ja(Fiyg) f(@)  fid,) £.(iyy)

‘ o -
R e — 3§ A — T )
nl n2 e o o nM ﬁl ﬁz e o o ﬁM
V~ _ e /I | = _ V ~ hlfl‘ ]
m. (1. ) =M (’I"""r_‘ r_() , ‘ f.n.) = N, F,F)
N ~ -1 = ~ ~
S =/ (1;0,C7) fi) () Jetyr)

(a) Original factor graph (b) Factor graph after EP



QCS-SGM+: Improved Quantized CS with SGM

B QCS-SGM+

Algorithm 1: QCS-SGM+

Input: {3:}}_,¢, v, IterEP, K,y, A, 02, quantization thresholds {[l,, u;)|q € O}
Initialization: x{ ~ ¢/ (0, 1)

1 fort=1¢to T do

2 Ot < Eﬁg/ﬁ%

3 fork =1to K do

4 Draw z* ~ N (0.1

Initialization: h’ ,'TF , hG, e

> for ZZ; itfngterlzf do Running EP to approximate
¢ — x° the pseudo-likelihood
G __ 1 F
7 T = X_a — ¥
; h* = ™ — hC
9 =21 7%
L_ X
10 Compute Vi, logpg, (y | x¢) as (11)
1 xb =xF 71+ o [so (1, Be) + 7V, 108 pa, (v | x2)| + v/20u2k
12 | Xpiq ¢ Xp

Output: X = x%

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "QCM-SGM+: Improved Quantized Compressed Sensing With Score-Based
Generative Models." (AAAI 2024)

Code: https://github.com/mengxiangming/QCS-SGM-plus



QCS-SGM+: Improved Quantized CS with SGM

B Experimental Results

e (General Matrices

(a) 1ll-conditioned matrices
A =VXU?t

V and U are independent Harr-distributed matrices

nonzero singular values of A satisfy 2~ = /M

. . Where k 1S the condition number
(A

(b) correlated matrices

A = R HRR
1 1
where R, = R? € RM*M and R = R € RY*V | H € RMX¥ i5 a random matrix

The (1, )) th element of both R1 and R2 1s p =/l and p 1s termed the correlation coefficient
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QCS-SGM+: Improved Quantized CS with SGM

B Experimental Results

1-bit CS on MNIST and CelebA for ill-conditioned A (x = 103 for MNIST and x = 10° for CelebA)

72./ o 4 | ‘{°\<:

th

Tru

BIPG

71/04 [ X Q
7L/ O4d | 4YaA8 9

(a) MNIST, M = 400,0 = 0.05, kK = 10° (b) CelebA, M = 4000, o = 0.001, k = 10°

QCS-SGM+ QCS-SGM OneShot
QCS-SGM+ QCS-SGM  OneShot

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods.
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QCS-SGM+: Improved Quantized CS with SGM

B Experimental Results

MNIST .'1-tv>it CSY with ill-gonditiqned A )

5
P— — BIPG
—le s i T~ —0o— OneShot
% — ¥— QCS-SGM
> S > QCS-SGM+
o
a 20 t N ft
i) ™
oC ~
2 ™~ e
4 ~
Ve = 3.
o
o= B
~— S — i
101 : Ao T DO D e B " DR o
10° 10° 10* 10°

condition number of A

MNIST, 1-bit CS with correlated A

5
| .
e b
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1) e e
i« Tk ~4
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— G— OneShot e —~ 00— M
—#— QCS-SGM
—{— QCS-SGM+ |
10 : v
0.1 0.2 0.3 0.4

correlation coefficient p

- CIFAR-1Q , 1-bit CS with ill-conditioned A
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CIFAR-10, 1-bit CS with correlated A
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. N
15 ; . *
0.1 0.2 0.3 0.4
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—o— BIPG
P — %— OneShot
0L _ % B |—p—QCS-SGM
~ e -

e ks QCS-SGM+
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CelebA, 1-bit CS with correlated A
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—— — |
20# o -
—
el
C 16 —
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& T S
: . af
14 | —— BIPG ;
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12 | —%— QCS-SGM
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10 ‘ 1
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correlation coefficient p

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods.
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QCS-SGM+;

B Experimental Results

Improved Quantized CS with SGM

QCS-SGM

QCS-SGM+

Truth

o)\ e 8 m
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(b) 1-bit CS with correlated A,p = 0.4, M = 400, 0 = 0.1

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods._



QCS-SGM+: Improved Quantized CS with SGM

B Experimental Results

Truth QCS-SGM+ QCS-SGM
edy 32\ S

TAEREE YOI ©

SO EYNGSS (S

1-bit CS on CelebA for ill-conditioned A ( ¥ = 10° for CelebA), M = 4000 < N, ¢ = 0.1

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM.
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Summary
B Generative Image Restoration

Image Restoration (linear and nonlinear) with Diffusion Models

e T L L Ll Ll L L L L L L L L L L Ll L Ll L L Ll L e L L L L L L L Ll Ll L LT T
.....
‘.

---------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------
........
.

Diffusion Model Prior inverse problems Bayesian Inference
f | el ] Posterior  Prior  Likelihood
-’5\ PSS =
'~ : x
: %‘n E Unknown [ ﬂX) ] Known Oberations p(x I )
' _Scor: \ what is x? /
3 | u matching - -

. - V,logp(x|y) = V,log p(x) + V,log p(y | %)

Data samples
Likelihood

Score

Posterior Score Prior Score

® .
..........
------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------

e [inear case: DMPS for general noisy linear inverse problems
e Nonlinear case: QCS-SGM/QCS-SGM+ for quantized compressed sensing

For more details, please refer to my personal page ({4~ A F#T11): https:/mengxiangming.github.io/

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Diffusion Model Based Posterior Sampling for Noisy Linear Inverse

Problems." arXiv preprint arXiv:2211.12343v2(2023)

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Quantized Compressed Sensing with Score-Based Generative Models." ICLR
2023

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "QCM-SGM+: Improved Quantized Compressed Sensing With Score-Based
Generative Models." AAAI 2024

Code: https://github.com/mengxiangming/dmps

Code: https://github.com/mengxiangming/QCS-SGM

Code: https://github.com/mengxiangming/QCS-SGM-plus
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https://github.com/mengxiangming/QCS-SGM-plus

Thank you!
Q&A



