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Mathematical Formulation
Background

noisemixing matrix 

Linear Inverse Problems

Examples of A

Super-resolution

Denoising

Deblurring

Colorization

A = I
A = (I ⊗ kT) P

A = Ar ⊗ Ac

 is a vector of  size   and   is  
a permutation matrix that reorders a vectorized image into patches  

k r2 P

For a 2D blurring kernel  ,  and    
apply a 1D convolution with kernels  and , respectively  

K = rcT Ac Ar
c r

(Ax)i = kTpi  and  is the 3-valued -th pixel of the original color image kT = (
1
3

,
1
3

,
1
3

) pi i

Fundamental Challenge:

Due to incomplete/noisy measurements, the image restoration problem is ill-posed!



A Bayesian Perspective
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p(x |y) =
p(x)p(y |x)

p(y)

Bayesian Inference

Bayes’ rule

Posterior Prior Likelihood 

Inverse Problems

Bayesian Perspective for Image Restoration



A Bayesian Perspective
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Bayesian Learning Framework [David Blei 2016]

Prior Likelihood Posterior

Bayesian Perspective for Image Restoration

Bayesian Learning Framework

p(x |y) =
p(x)p(y |x)

p(y)

Bayesian Inference

Bayes’ rule

Posterior Prior Likelihood 

Inverse Problems
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Key idea

The more you know a priori 
the less you need!

You can easily recognize 
someone you are familiar with  

at one single sight

A Bayesian Perspective
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Key idea

The more you know a priori 
the less you need!

How to obtain good  
prior knowledge?  

You can easily recognize 
someone you are familiar with  

at one single sight

A Bayesian Perspective



Sparsity Modeling
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Classic Approach：Sparsity Modeling

• Sparsity: The target signal x is sparse, i.e., most 
elements are zero (under some transformation)



Sparsity Modeling
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Classic Approach：Sparsity Modeling

• Compressed Sensing Sparsity Modeling & Compressed Sensing

1. The standard  sparsity is equivalent to Laplace 

prior distribution.

2. More complicated priors, e.g., group Lasso, 

structured sparsity, can be used to improve 
performance. 


3. However, such hand-crafted priors might still fail 
to capture the rich structure in natural signals.


L1x̂ = arg min
x

1
2

∥y − Ax∥2
2+ λr(x)

Sparse Regularization

Commonly used   r(x)
 sparsity (Lasso)L1

Group Lasso

Structured Sparsity

r(x) = ∥x∥1
r(x) = ∑

g

∥xg∥2

Tree-structured/Graph sparsity
Total Variation Regularization …

• Sparsity: The target signal x is sparse, i.e., most 
elements are zero (under some transformation)



Classic Approach：Sparsity Modeling
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Is sparse prior good enough? 

 “What I cannot create, I do not understand”  
——Richard Feynman

Can we create realistic images with 
a sparse prior ? 



A New Era: Generative AI

by ChatGPT-4 by DALL·E 2 by DALL·E 2



Both are AI generated faces….

A New Era: Generative AI



Both are AI generated faces….

A New Era: Generative AI

Motivation: Can we use generative 
models as prior for image restoration?



Generative Models
Generative Learning 

Credit to: https://cvpr2022-tutorial-diffusion-models.github.io

 Generative Models

 Generative Models
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A Tutorial Introduction to Generative Models

New Samples



Different types of generative models
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Diffusion Models: Emerging as most powerful generative models 

A Tutorial Introduction to Generative Models



Sampling with Langevin Dynamics 
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An Old Result

 converges to samples from   when xK p(x) ϵ → 0,K → ∞

step size Gaussian noisescore function

Given score function of p(x), one can obtain samples iteratively as follows G. Parisi 1981 Welling, Max; Teh, Yee Whye 2011, Neal 2010 



Sampling with Langevin Dynamics 
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An Old Result

 converges to samples from   when xK p(x) ϵ → 0,K → ∞

Given score function of p(x), one can obtain samples iteratively as follows G. Parisi 1981 Welling, Max; Teh, Yee Whye 2011, Neal 2010 

step size Gaussian noisescore function

Two-Gaussian Mixture Score Function: Vector Field

A Toy Example



Key Idea 
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How to Estimate Score From Data Samples
Approximating the score function by a neural network

Neural network score function



Key Idea 
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Approximating the score function by a neural network

Neural network score function

Network Training 

unknown target!

How to Estimate Score From Data Samples



Key Idea 
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Approximating the score function by a neural network

Neural network score function

A. Hyvarinen 2005  

Network Training 

Score-Matching

unknown target!

Valid loss

No explicit dependance on unknown p(x)

How to Estimate Score From Data Samples



Key Idea 
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Approximating the score function by a neural network

Neural network score function

Network Training 

Score-Matching

unknown target!

Challenging for the
high-dimensional case!

How to Estimate Score From Data Samples
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Challenges of High Dimensional Score Estimation
Estimated scores are only accurate in high density regions.

Original distribution
 p(x)

Figure credit to Yang Song

Illustration via Two-Gaussian Mixture



26

Estimated scores are only accurate in high density regions.

Estimated scores are accurate everywhere for noise perturbed data 

Original distribution
 p(x)

Noise-perturbed

x′ = x + βz

Corrupted noise

z

pβ(x′ )
Figure credit to Yang Song

Illustration via Two-Gaussian Mixture

Challenges of High Dimensional Score Estimation
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Estimated scores are only accurate in high density regions.

Estimated scores are accurate everywhere for noise perturbed data 

Noisy pβ(x′ )

x′ = x + βz
how to choose an appropriate noise scale  for the perturbation?   β

Large noise: cover the low-density regions well, but different from the original distribution 

Small noise: similar to the original distribution, but does not cover low-density regions well

Illustration via Two-Gaussian Mixture

Original distribution
 p(x)

Challenges of High Dimensional Score Estimation



Key Idea
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Annealing:  using multiple noise scales  for the perturbation!   {βt}T
t=1

0 < β1 < β2 < ⋯ < βTxt = x + βtz

pβt
(xt) = ∫ p(x)N(xt |x, β2

t )dx

One Smart Solution: Annealing 
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Annealing:  using multiple noise scales  for the perturbation!   {βt}T
t=1

0 < β1 < β2 < ⋯ < βTxt = x + βtz

pβt
(xt) = ∫ p(x)N(xt |x, β2

t )dx

Using neural network to estimate the score  of each noise-perturbed distribution ∇xt
log pβt

(xt) pβt
(xt)

sθ(xt, t) ≈ ∇xt
log pβt

(xt) ∀t

Loss function:
T

∑
t=1

λtEpβt(xt)∥∇xt
log pβt

(xt) − sθ(xt, t)∥2

Estimated Score True Score

One Smart Solution: Annealing 
Key Idea

Network Training



30

Annealing:  using multiple noise scales  for the perturbation!   {βt}T
t=1

0 < β1 < β2 < ⋯ < βTxt = x + βtz

sθ(xt, t) ≈ ∇xt
log pβt

(xt) ∀t

T

∑
t=1

λtEpβt(xt)∥∇xt
log pβt

(xt) − sθ(xt, t)∥2

β1 β2 β3

samples of  xt

estimated  
scores

Figure credit to Yang Song

One Smart Solution: Annealing 
Key Idea



A Big Picture
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Putting Ideas Together
xt = x0 + βtzt

Forward Process

0 < β1 < β2 < ⋯ < βT
A sequence of noise levels



A Big Picture

32

xt = x0 + βtzt

Forward Process xk
t−1 = xk

t + αt ∇xt
log pβt

(xt)+ 2αtzk
t

Approximated by neural network 
 sθ(xt, t)

Reverse Process

Reverse it!

Score function

0 < β1 < β2 < ⋯ < βT
A sequence of noise levels

Annealed Langevin dynamics

Putting Ideas Together
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Different Types of Diffusion Models

xt = x0 + βtzt

• Noise Conditional Score Network (NCSN)

xk
t−1 = xk

t + αt ∇xt
log pβt

(xt)+ 2αtzk
t

Forward:

Reverse:

• Denoising Diffusion Probabilistic Models (DDPM)
Forward:

Reverse:

• Flow-Matching Models
Forward:

Reverse:

Yang Song, Stefano Ermon 2019

Jonathan H0 et al  2020

Yaron Lipman 2022 Xingchao Liu et al 2022, Nanye Ma et al 2024
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Generative Modeling p(x |y) =
p(x)p(y |x)

p(y)

Using  Generative Model as Prior

Challenge: How can we  sample from the posterior  ?p(x |y)

Generative Image Restoration
A New Paradigm For Image Restoration

y = Ax + n

Linear Measurements



Generative Image Restoration
Posterior Sampling
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xk
t−1 = xk

t + αt ∇xt
log pβt

(xt)+ 2αtzk
tNCSN:

Prior Sampling

Available From Pre-trained  
Diffusion Models



Generative Image Restoration
Posterior Sampling
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Prior Sampling

Bayes’ Rule p(x |y) =
p(x)p(y |x)

p(y)
∇xlog p(x ∣ y) = ∇xlog p(x) + ∇xlog p(y |x)

Posterior Score Prior Score Likelihood Score

xk
t−1 = xk

t + αt ∇xt
log pβt

(xt)+ 2αtzk
tNCSN: Available From Pre-trained  

Diffusion Models



Generative Image Restoration
Posterior Sampling
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p(x |y) =
p(x)p(y |x)

p(y)
∇xlog p(x ∣ y) = ∇xlog p(x) + ∇xlog p(y |x)

Prior Sampling

Posterior Sampling

Bayes’ Rule
Posterior Score Prior Score Likelihood Score

NCSN: xk
t−1 = xk

t + αt(∇xt
log pβt

(xt)+ ∇xt
log pβt

(y |xt))+ 2αtzk
t

xk
t−1 = xk

t + αt ∇xt
log pβt

(xt)+ 2αtzk
tNCSN: Available From Pre-trained  

Diffusion Models



Generative Image Restoration
Posterior Sampling
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p(x |y) =
p(x)p(y |x)

p(y)
∇xlog p(x ∣ y) = ∇xlog p(x) + ∇xlog p(y |x)

Prior Sampling

Posterior Sampling

Bayes’ Rule
Posterior Score Prior Score Likelihood Score

NCSN: xk
t−1 = xk

t + αt(∇xt
log pβt

(xt)+ ∇xt
log pβt

(y |xt))+ 2αtzk
tThe remaining goal is to 

Compute∇xlog p(y |x)

xk
t−1 = xk

t + αt ∇xt
log pβt

(xt)+ 2αtzk
tNCSN: Available From Pre-trained  

Diffusion Models



Generative Image Restoration
Key Challenge
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The likelihood score  is intractable except t=0, even for the linear case ∇xt
log p(y |xt) y = Ax0 + n

p(y ∣ xt) = ∫ p(y ∣ x0, xt)p(x0 ∣ xt)dx0

= ∫ p(y ∣ x0) p(x0 ∣ xt)dx0,
intractable！

Graphical Model
x̂0(xt) := 𝔼[x0 ∣ xt] =

1
ᾱ(t) (xt + (1 − ᾱ(t))∇xt

log pt(xt))
Tweedie’s formula: (Robbins, 1992; Stein, 1981)

Gauss
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Key Challenge
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The likelihood score  is intractable except t=0, even for the linear case ∇xt
log p(y |xt) y = Ax0 + n

p(y ∣ xt) = ∫ p(y ∣ x0, xt)p(x0 ∣ xt)dx0

= ∫ p(y ∣ x0) p(x0 ∣ xt)dx0,
intractable！

Graphical Model

Most Popular Solutions

DPS

p(y ∣ xt) ≈ 𝒩(Ax̂0(xt); σ2
y I)

p(y |xt) ≈ 𝒩(Ax̂0(xt); γ2
t AAT + σ2

y I)

PGDM

 Chung et al. (2022a)

Song et al. (2022) 
∇xt

log p(y |xt) ≈
∂Tx̂0(xt)

∂xt
∇x̂0(xt)log p̃(y | x̂0(xt))

The Jacobian needs back-propagation through  
diffusion models, which is time-consuming 

x̂0(xt) := 𝔼[x0 ∣ xt] =
1
ᾱ(t) (xt + (1 − ᾱ(t))∇xt

log pt(xt))
Tweedie’s formula: (Robbins, 1992; Stein, 1981)

Gauss



A Simple Alternative Approximation
One Simple Solution: DMPS

p(y ∣ xt) = ∫ p(y ∣ x0)p(x0 ∣ xt)dx0

intractable

p(x0 ∣ xt) =
p(xt ∣ x0) p(x0)

∫ p(xt ∣ x0)p(x0)dx0

Motivation: Is it possible to obtain a closed-form approximation for ? p(x0 ∣ xt)
Gaussian Intractable 

closed-form? 



•Assumption 1
The prior               is non-informative w.r.t. p(xt |x0)p(x0)

Asymptotically accurate when the perturbed noise is negligible

A Simple Alternative Approximation
One Simple Solution: DMPS

p(x0 |xt) ∝ p(xt |x0)

p(y ∣ xt) = ∫ p(y ∣ x0)p(x0 ∣ xt)dx0

intractable

p(x0 ∣ xt) =
p(xt ∣ x0) p(x0)

∫ p(xt ∣ x0)p(x0)dx0

Motivation: Is it possible to obtain a closed-form approximation for ? p(x0 ∣ xt)
Gaussian Intractable 

closed-form? 

Gaussian Closed-Form 
Gaussian Approximation



Assumption 1 is asymptotically accurate when the perturbed noise is negligible, i.e., t is small

One Simple Solution: DMPS
A Simple Alternative Approximation

A Toy Example with a Gaussian p(x0)



Closed-form noise-perturbed likelihood score ∇xt
log p(y |xt)

Efficient Computation via SVD

One Simple Solution: DMPS



Resultant DMPS Algorithm
One Simple Solution: DMPS



Experiments Results
One Simple Solution: DMPS

Dataset: FFHQ

DDPM Version



Experiments Results
One Simple Solution: DMPS

Dataset: CelebA-HQ

Flow-based Version



Experiments Results
One Simple Solution: DMPS

Dataset: 256x 256 FFHQ

Dataset: 256x 256  CelebA-HQ

Results of DDPM Version

Results of Flow-based Version



Experiments Results
One Simple Solution: DMPS

Running Time of DDPM Version Running Time of Flow-based Version

The proposed DMPS is 2-3 times faster than DPS and PGDM (OT-ODE, flow version)  
while achieving comparable or even better reconstruction performances

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Diffusion Model Based Posterior Sampling for Noisy Linear Inverse Problems." arXiv 
preprint arXiv:2211.12343v3, 2024 

Code:  https://github.com/mengxiangming/dmps 

https://github.com/mengxiangming/dmps
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Nonlinear Image Restoration
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Image Restoration

Nonlinear Image Restoration

• Linear Case：  

• Nonlinear Case：  is nonlinear transformation 
f(x) = Ax + n

f(x)

Quantized Compressed Sensing （QCS） 

Quantization is essential ! 

Q(Ax + n)

Quantizer

Extreme case: 1-bit quantization

y = sign(Ax + n)

y = Q(Ax + n)



Basic Idea

xt+1 = xt + αt[∇xt
log p(xt) + ∇xt

log p(y |xt)] + 2αtzt

From diffusion models From quantized measurementsSamples

Iterative Sampling 
Equation

Intractable!  

53

Quantized CS with Diffusion Models



• Assumption 1

p(xt |x0) ∝ p(x0 |xt)

AAT = Diagonal matrix

(Approximately) satisfied by many popular CS matrices 
 e.g., DFT, DCT, Hadamard,  and random Gaussian matrices, etc. 

The prior              is non-informative w.r.t. p(xt |x0)p(x0)

The sensing matrix A is row-orthogonal, i.e., 

Two Assumptions of QCS-SGM
QCS-SGM: Quantized CS with SGM

• Assumption 2

p(y ∣ xt) = ∫ p(y ∣ x0, xt)p(x0 ∣ xt)dx0

= ∫ p(y ∣ x0) p(x0 ∣ xt)dx0,
Intractablenon-Gauss

Unlike linear case, Assumption 1 alone 
 does not yield closed-form p(y ∣ xt)

More difficult to obtain 
closed-form approximation



G(βt, y, A, xt) = [g1, g2, . . . , gM]T ∈ ℝM×1
where

gm =
exp (−

ũ2
ym

2 ) − exp (−
l̃2

ym

2 )
σ2 + β2

t aT
m

2

2
∫ ũym

l̃ym
exp (− t2

2 )dt

ũym
=

aT
mxt − uym

σ2 + β2
t aT

m
2

2

l̃ym
=

aT
mxt − lym

σ2 + β2
t aT

m
2

2

∇xt
log p(y ∣ xt) = ATG(βt, y, A, xt)

• Corollary: In the special case of standard CS 

∇xt
log p(y ∣ xt) = AT(σ2I + β2

t AAT)−1 (y − Axt)
✓Explain the necessity of annealing term in Jalal et al. (2021a) 

✓Extend and improve Jalal et al. (2021a) in the general case

• Theorem 1: Under assumptions 1 and 2, we obtain a closed-form solution to the likelihood score

Results of Pseudo-likelihood Score
QCS-SGM: Quantized CS with SGM

∇xt
log p(y ∣ xt) =

AT (y − Axt)
σ2+γ2

t



Only this term is different 
from SGM！

QCS-SGM: Quantized CS with SGM
Resultant Algorithm 

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Quantized Compressed Sensing with Score-Based Generative Models."  
ICLR 2023 

Code:  https://github.com/mengxiangming/QCS-SGM



Experimental Results
1-bit CS on CelebA 64 × 64  1-bit CS on MNIST 28 × 28 

The proposed QCS-SGM achieves remarkably better performances

Ground Truth

Our Method

57

QCS-SGM: Quantized CS with SGM



Experimental Results
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QCS-SGM: Quantized CS with SGM

Results of QCS-SGM on CelebA
 in the fixed budget case

 (Q×M = 12288)



Experimental Results
FFHQ 256 × 256  high-resolution images

M =
1
8

N

The proposed QCS-SGM can well recover high-resolution image  
from only a few low-resolution (1,2,3-bit) quantized measurements

M
N

=
1
8

≪ 1Compression Ratio
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QCS-SGM: Quantized CS with SGM



Limitation of QCS-SGM

QCS-SGM is limited to  
(approximately) row-orthogonal matrices A

Why?  The pseudo-likelihood is otherwise intractable

Intractable integration

QCS-SGM+: Improved Quantized CS with SGM



A New Perspective

Likelihood PriorPartition Function (normalization term)

pseudo-likelihood

The pseudo-likelihood can be viewed as the partition function of random variables ñt

One fundamental 
Problem in Bayesian 

Inference

QCS-SGM+: Improved Quantized CS with SGM



A New Perspective

Likelihood PriorPartition Function (normalization term)

pseudo-likelihood

The pseudo-likelihood can be viewed as the partition function of random variables ñt

One fundamental 
Problem in Bayesian 

Inference

Resort to the famous expectation propagation (EP) Tom Minka 2001

QCS-SGM+: Improved Quantized CS with SGM



QCS-SGM+

Running EP to approximate 
 the pseudo-likelihood 

QCS-SGM+: Improved Quantized CS with SGM

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "QCM-SGM+: Improved Quantized Compressed Sensing With Score-Based  
Generative Models."  (AAAI 2024) 

Code:  https://github.com/mengxiangming/QCS-SGM-plus



Experimental Results
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(a) ill-conditioned matrices
• General Matrices

(b) correlated matrices

The (i, j) th element of both R1 and R2  is   and   is termed the correlation coefficientρ|i−j| ρ

QCS-SGM+: Improved Quantized CS with SGM



Experimental Results
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QCS-SGM+: Improved Quantized CS with SGM

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods.

1-bit CS on MNIST and CelebA for ill-conditioned A (  for MNIST and  for CelebA)κ = 103 κ = 106



Experimental Results
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QCS-SGM+: Improved Quantized CS with SGM

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods.



Experimental Results
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QCS-SGM+: Improved Quantized CS with SGM

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods.



Experimental Results

68

QCS-SGM+: Improved Quantized CS with SGM

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM.

1-bit CS on CelebA for ill-conditioned A (  for CelebA),  κ = 106 M = 4000 ≪ N, σ = 0.1



 Generative Image Restoration

69

Summary

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Diffusion Model Based Posterior Sampling for Noisy Linear Inverse 
Problems." arXiv preprint arXiv:2211.12343v2(2023) 
Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Quantized Compressed Sensing with Score-Based Generative Models."  ICLR 
2023 
Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "QCM-SGM+: Improved Quantized Compressed Sensing With Score-Based  
Generative Models." AAAI 2024 
Code:  https://github.com/mengxiangming/dmps 
Code:  https://github.com/mengxiangming/QCS-SGM 
Code:  https://github.com/mengxiangming/QCS-SGM-plus

Image Restoration (linear and nonlinear) with Diffusion Models

For more details, please refer to my personal page (个⼈主页)：https://mengxiangming.github.io/

• Linear case: DMPS for general noisy linear inverse problems 
• Nonlinear case: QCS-SGM/QCS-SGM+ for quantized compressed sensing 

inverse problems

https://github.com/mengxiangming/dmps
https://github.com/mengxiangming/QCS-SGM
https://github.com/mengxiangming/QCS-SGM-plus


Thank you! 
Q&A


