2024 International Workshop on Learning and Information Theory (WOLIT'24)

Generative Image Restoration Using Diffusion Models: **A Paradigm Shift from Sparsity to Generative Modeling**

Xiangming Meng

Assistant Professor ZJU-UIUC Institute, Zhejiang University

Email: <u>xiangmingmeng@intl.zju.edu.cn</u>

Collaborator: Yoshiyuki Kabashima, The University of Tokyo, Japan

August 19th, 2024 Shenzhen, China

1. Image Restoration and Diffusion Models 2. Linear Image Restoration with DM 3. Nonlinear Image Restoration with DM

Contents

Image Restoration

Clean Image x (unknown)

Image Restoration

Image Restoration

Super-resolution

Deblurring

Denoising

Colorization

Mathematical Formulation

Mathematical Formulation

Examples of A

Super-resolution

Denoising

Deblurring

Colorization

 $\mathbf{A} = (\mathbf{I} \otimes \mathbf{k}^T) \mathbf{P}$ $\mathbf{A} = \mathbf{I}$ $\mathbf{A} = \mathbf{A}_r \otimes \mathbf{A}_c$ $(\mathbf{A}\mathbf{x})_i = \mathbf{k}^T \mathbf{p}_i$

Fundamental Challenge:

k is a vector of size r^2 and **P** is a permutation matrix that reorders a vectorized image into patches

For a 2D blurring kernel $\mathbf{K} = \mathbf{r}\mathbf{c}^T$, \mathbf{A}_c and \mathbf{A}_r apply a 1D convolution with kernels **c** and **r**, respectively

 $\mathbf{k}^T = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ and \mathbf{p}_i is the 3-valued *i*-th pixel of the original color image

Due to incomplete/noisy measurements, the image restoration problem is ill-posed!

A Bayesian Perspective for Image Restoration

A Bayesian Perspective for Image Restoration

Bayesian Learning Framework

Bayesian Learning Framework

[David Blei 2016]

A Bayesian Perspective

The more you know a priori the less you need!

You can easily recognize someone you are familiar with at one single sight

A Bayesian Perspective

The more you know a priori the less you need!

How to obtain good prior knowledge?

You can easily recognize someone you are familiar with at one single sight

Classic Approach: Sparsity Modeling Sparsity Modeling

• **Sparsity**: The target signal x is **sparse**, i.e., most elements are zero (under some transformation)

11

Classic Approach: Sparsity Modeling Sparsity Modeling

• Compressed Sensing Sparse Regularization

$$\hat{\mathbf{x}} = \arg \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda r(\mathbf{x})$$

Commonly used $r(\mathbf{x})$
 L_{1} sparsity (Lasso) $r(x) = \|x\|_{1}$
Group Lasso $r(x) = \sum_{g} \|x_{g}\|_{2}$
Structured Sparsity Tree-structured/Graph sparsity
Tree-structured/Graph sparsity Total Variation Regularization ...

• **Sparsity**: The target signal x is **sparse**, i.e., most elements are zero (under some transformation)

Sparsity Modeling & Compressed Sensing The standard L_1 sparsity is equivalent to Laplace prior distribution.

- More complicated priors, e.g., group Lasso, 2. structured sparsity, can be used to improve performance.
- However, such hand-crafted priors might still fail 3. to capture the rich structure in natural signals.

Classic Approach: Sparsity Modeling

"What I cannot create, I do not understand"

Can we create realistic images with a sparse prior?

A New Era: Generative Al

by ChatGPT-4

by DALL·E 2

by DALL·E 2

A New Era: Generative Al

Both are AI generated faces....

A New Era: Generative Al

Motivation: Can we use generative models as prior for image restoration?

A Tutorial Introduction to Generative Models

Generative Models

Generative Learning

Credit to: https://cvpr2022-tutorial-diffusion-models.github.io

Generative Models

Neural Network

New Samples

A Tutorial Introduction to Generative Models

Different types of generative models

Diffusion Models: Emerging as most powerful generative models

An Old Result

Sampling with Langevin Dynamics

Given score function of p(x), one can obtain samples iteratively as follows G. Parisi 1981 Welling, Max; Teh, Yee Whye 2011, Neal 2010

 \mathbf{x}_{K} converges to samples from $p(\mathbf{x})$ when $\epsilon \to 0, K \to \infty$

x) +
$$\sqrt{2\epsilon}$$
 z_i, $i = 0, 1, \dots, K$
nction Gaussian noise

An Old Result

Sampling with Langevin Dynamics

Given score function of p(x), one can obtain samples iteratively as follows G. Parisi 1981 Welling, Max; Teh, Yee Whye 2011, Neal 2010

Score vector field $\nabla \log p(x)$ for Gaussian Mixture

A Toy Example

Two-Gaussian Mixture

$\nabla_{\mathbf{x}} \log p(\mathbf{x})$ **Score Function: Vector Field**

Key Idea

Approximating the score function by a neural network

 $\mathbf{s}_{ heta}(\mathbf{x})$

Neural network

 $\approx \nabla_{\mathbf{x}} \log p(\mathbf{x})$

score function

Key Idea

Approximating the score function by a neural network

Neural network

 $\approx \nabla_{\mathbf{x}} \log p(\mathbf{x})$

score function

Key Idea

Approximating the score function by a neural network

No explicit dependance on unknown p(x) $\mathbb{E}_{p(\mathbf{x})} \left| \operatorname{tr}(\nabla_{\mathbf{x}} \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x})) + \frac{1}{2} \left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) \right\|_{2}^{2} \right|$ Valid loss

Key Idea

Approximating the score function by a neural network

 $\mathbf{s}_{\theta}(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p(\mathbf{x})$

score function

Network Training

unknown target!

$$p(\mathbf{x}) - \mathbf{s}_{\theta}(\mathbf{x}) \|_2^2$$

Score-Matching

Challenging for the -high-dimensional case!

$$(\mathbf{x})) + rac{1}{2} \left\| \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) \right\|_{2}^{2}$$

Challenges of High Dimensional Score Estimation

Illustration via Two-Gaussian Mixture

Estimated scores are only accurate in high density regions.

Original distribution $p(\mathbf{x})$

Figure credit to Yang Song

Challenges of High Dimensional Score Estimation

Illustration via Two-Gaussian Mixture

Estimated scores are only accurate in high density regions.

Figure credit to Yang Song

Challenges of High Dimensional Score Estimation

Illustration via Two-Gaussian Mixture

Estimated scores are only accurate in high density regions.

Original distribution $p(\mathbf{x})$

Estimated scores are accurate everywhere for noise perturbed data

how to choose an appropriate noise scale β for the perturbation?

Large noise: cover the low-density regions well, but different from the original distribution

Small noise: similar to the original distribution, but does not cover low-density regions well

One Smart Solution: Annealing

Key Idea

Annealing: using multiple noise scales $\{\beta_t\}_{t=1}^T$ for the perturbation! $\mathbf{X}_t = \mathbf{X} + \beta_t \mathbf{Z}$ $0 < \beta_1 < \beta_2 < \dots < \beta_T$

$$p_{\beta_t}(\mathbf{x}_t) = \int p(\mathbf{x}) N(\mathbf{x}_t | \mathbf{x}, \beta_t^2) d\mathbf{x}$$

One Smart Solution: Annealing

Key Idea

$$p_{\beta_t}(\mathbf{x}_t) = \int p$$

Network Training

Using neural network to estimate the score $\nabla_{\mathbf{x}_t} \log p_{\beta_t}(\mathbf{x}_t)$ of each noise-perturbed distribution $p_{\beta_t}(\mathbf{x}_t)$

$$\mathbf{s}_{\theta}(\mathbf{x}_{t},t) \approx$$

Estimated Score

t = 1

Annealing: using multiple noise scales $\{\beta_t\}_{t=1}^T$ for the perturbation! $\mathbf{X}_t = \mathbf{X} + \beta_t \mathbf{Z}$ $0 < \beta_1 < \beta_2 < \dots < \beta_T$

 $p(\mathbf{x})N(\mathbf{x}_t | \mathbf{x}, \beta_t^2)d\mathbf{x}$

$$\nabla_{\mathbf{x}_t} \log p_{\beta_t}(\mathbf{x}_t) \ \forall t$$

True Score

Loss function: $\sum \lambda_t \mathbf{E}_{p_{\beta_t}(\mathbf{x}_t)} \| \nabla_{\mathbf{x}_t} \log p_{\beta_t}(\mathbf{x}_t) - \mathbf{s}_{\theta}(\mathbf{x}_t, t) \|^2$

One Smart Solution: Annealing

Key Idea

Annealing: using multiple noise scales $\{\beta_t\}_{t=1}^T$ for the perturbation! $\mathbf{X}_t = \mathbf{X} + \beta_t \mathbf{Z}$ $0 < \beta_1 < \beta_2 < \cdots < \beta_T$

samples of \mathbf{x}_t

estimated scores

Figure credit to Yang Song

Putting Ideas Together

A Big Picture

Data

Forward Process

 $\mathbf{x}_t = \mathbf{x}_0 + \beta_t \mathbf{z}_t$

Forward diffusion process (fixed)

 $0 < \beta_1 < \beta_2 < \cdots < \beta_T$

A sequence of noise levels

Noise

31

Putting Ideas Together

A Big Picture

Data

Reverse denoising process (generative) $\mathbf{x}_{t-1}^k = \mathbf{x}_t^k + \alpha_t \nabla_{\mathbf{x}_t} \log p_{\beta_t}(\mathbf{x}_t) + \sqrt{2\alpha_t} \mathbf{z}_t^k$ **Score function**

Approximated by neural network $\mathbf{S}_{\theta}(\mathbf{X}_{t},t)$

 $\mathbf{x}_t = \mathbf{x}_0 + \beta_t \mathbf{z}_t$

Forward diffusion process (fixed)

 $0 < \beta_1 < \beta_2 < \cdots < \beta_T$

A sequence of noise levels

Noise

Annealed Langevin dynamics

Reverse it!

Reverse Process

• Noise Conditional Score Network (NCSN) Yang Song, Stefano Ermon 2019

Forward: $\mathbf{X}_t = \mathbf{X}_0 + \beta_t \mathbf{Z}_t$

Reverse: $\mathbf{x}_{t-1}^k = \mathbf{x}_t^k + \alpha_t \nabla_{\mathbf{x}_t} \log p_{\beta_t}(\mathbf{x}_t) + \sqrt{2\alpha_t} \mathbf{z}_t^k$

Denoising Diffusion Probabilistic Models (DDPM) Jonathan Ho et al 2020 Forward: $\mathbf{x}_t = \sqrt{\alpha_t} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}_{t-1}$

Reverse:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} (\mathbf{x}_t + (1 - \alpha_t) \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)) + \beta_t \mathbf{z}_t$$

• Flow-Matching Models Yaron Lipman 2022 Xingchao Liu et al 2022, Nanye Ma et al 2024

Forward:
$$\mathbf{x}_t = a_t \mathbf{x}_0 + b_t \epsilon$$

Reverse:
$$\mathbf{x}_{t-1} = \mathbf{x}_t - \left(\frac{\dot{a}_t}{a_t}\mathbf{x}_t + \frac{b_t(\dot{a}_tb_t - a_t\dot{b}_t)}{a_t}\nabla_{\mathbf{x}_t}\log p(\mathbf{x}_t)\right)\Delta_t$$

Different Types of Diffusion Models

1. Image Restoration and Diffusion Models 2. Linear Image Restoration with DM 3. Nonlinear Image Restoration with DM

Contents

A New Paradigm For Image Restoration

Challenge: How can we sample from the posterior $p(\mathbf{x} | \mathbf{y})$ 35

Posterior Sampling

Prior Sampling

Posterior Sampling

Prior Sampling

NCSN: $\mathbf{x}_{t-1}^{k} = \mathbf{y}_{t-1}^{k}$ DDPM: $\mathbf{x}_{t-1} = -$

Flow-based: $\mathbf{x}_{t-1} = \mathbf{x}_{t-1}$

Bayes' Rule

 $p(\mathbf{x} \mid \mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y} \mid \mathbf{x})}{p(\mathbf{y})}$

$$\mathbf{x}_{t}^{k} + \alpha_{t} \nabla_{\mathbf{x}_{t}} \log p_{\beta_{t}}(\mathbf{x}_{t}) + \sqrt{2\alpha_{t}} \mathbf{z}_{t}^{k}$$
Available From Pre-train Diffusion Models
$$\frac{1}{\sqrt{\alpha_{t}}} (\mathbf{x}_{t} + (1 - \alpha_{t}) \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}) + \beta_{t} \mathbf{z}_{t},$$

$$\mathbf{x}_{t} - (\frac{\dot{a}_{t}}{a_{t}} \mathbf{x}_{t} + \frac{b_{t} (\dot{a}_{t} b_{t} - a_{t} \dot{b}_{t})}{a_{t}} \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t})) \Delta_{t}$$

 $\nabla_{\mathbf{x}} \log p(\mathbf{x} \mid \mathbf{y}) = \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \nabla_{\mathbf{x}} \log p(\mathbf{y} \mid \mathbf{x})$

Posterior Score

Prior Score

Likelihood Score

Posterior Sampling

Prior Sampling

Flo

Bayes' Rule

 $p(\mathbf{x})$

Posterior Sampling

NCSN:
$$\mathbf{x}_{t-1}^{k} = \mathbf{x}_{t}^{k} + \alpha_{t} \nabla_{\mathbf{x}_{t}} \log p_{\beta_{t}}(\mathbf{x}_{t}) + \sqrt{2\alpha_{t}} \mathbf{z}_{t}^{k}$$
 Available From Pre-train Diffusion Models
DDPM: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} (\mathbf{x}_{t} + (1 - \alpha_{t}) \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t})) + \beta_{t} \mathbf{z}_{t},$
pw-based: $\mathbf{x}_{t-1} = \mathbf{x}_{t} - (\frac{\dot{a}_{t}}{a_{t}} \mathbf{x}_{t} + \frac{b_{t}(\dot{a}_{t}b_{t} - a_{t}\dot{b}_{t})}{a_{t}} \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t})) \Delta_{t}$
 $\mathbf{x} \mid \mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y} \mid \mathbf{x})}{p(\mathbf{y})}$ $\nabla_{\mathbf{x}_{t}} \log p(\mathbf{x} \mid \mathbf{y}) = \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \nabla_{\mathbf{x}} \log p(\mathbf{y} \mid \mathbf{x})$
Posterior Score Prior Score Likelihood Score
NCSN: $\mathbf{x}_{t-1}^{k} = \mathbf{x}_{t}^{k} + \alpha_{t} (\nabla_{\mathbf{x}_{t}} \log p_{\beta_{t}}(\mathbf{x}_{t}) + \nabla_{\mathbf{x}_{t}} \log p_{\beta_{t}}(\mathbf{y} \mid \mathbf{x}_{t})) + \sqrt{2\alpha_{t}} \mathbf{z}_{t}^{k}$
DDPM: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} (\mathbf{x}_{t} + (1 - \alpha_{t}) \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}) + \nabla_{\mathbf{x}_{t}} \log p(\mathbf{y} \mid \mathbf{x}_{t})) + \beta_{t} \mathbf{z}_{t},$
w-based: $\mathbf{x}_{t-1} = \mathbf{x}_{t} - (\frac{\dot{a}_{t}}{a_{t}} \mathbf{x}_{t} + \frac{b_{t}(\dot{a}_{t}b_{t} - a_{t}\dot{b}_{t})}{a_{t}} \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}) + \nabla_{\mathbf{x}_{t}} \log p(\mathbf{y} \mid \mathbf{x}_{t}))) \Delta_{t}$

Flov

Posterior Sampling

Prior Sampling

Flo

Bayes' Rule

 $p(\mathbf{x})$

Posterior Sampling

NCSN:
$$\mathbf{x}_{t-1}^{k} = \mathbf{x}_{t}^{k} + \alpha_{t} \nabla_{\mathbf{x}_{t}} \log p_{\beta_{t}}(\mathbf{x}_{t}) + \sqrt{2\alpha_{t}} \mathbf{z}_{t}^{k}$$
 Available From Pre-traind
DDPM: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} (\mathbf{x}_{t} + (1 - \alpha_{t}) \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}) + \beta_{t} \mathbf{z}_{t})$
ow-based: $\mathbf{x}_{t-1} = \mathbf{x}_{t} - (\frac{\dot{a}_{t}}{a_{t}} \mathbf{x}_{t} + \frac{b_{t}(\dot{a}_{t}b_{t} - a_{t}\dot{b}_{t})}{a_{t}} \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}) \Delta_{t}$
 $\mathbf{x} \mid \mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y} \mid \mathbf{x})}{p(\mathbf{y})}$ $\nabla_{\mathbf{x}_{t}} \log p(\mathbf{x} \mid \mathbf{y}) = \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \nabla_{\mathbf{x}} \log p(\mathbf{y} \mid \mathbf{x})$
Posterior Score Prior Score Likelihood Score
NCSN: $\mathbf{x}_{t-1}^{k} = \mathbf{x}_{t}^{k} + \alpha_{t}(\nabla_{\mathbf{x}_{t}} \log p_{\beta_{t}}(\mathbf{x}_{t}) + \nabla_{\mathbf{x}_{t}} \log p_{\beta_{t}}(\mathbf{y} \mid \mathbf{x}_{t})) +$
The remaining goal Compute $\nabla_{\mathbf{x}} \log p(\mathbf{y})$
DDPM: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} (\mathbf{x}_{t} + (1 - \alpha_{t}) \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}) + \nabla_{\mathbf{x}_{t}} \log p(\mathbf{y} \mid \mathbf{x}_{t}))$
w-based: $\mathbf{x}_{t-1} = \mathbf{x}_{t} - (\frac{\dot{a}_{t}}{a_{t}} \mathbf{x}_{t} + \frac{b_{t}(\dot{a}_{t}b_{t} - a_{t}\dot{b}_{t})}{a_{t}} \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}) + \nabla_{\mathbf{x}_{t}} \log p(\mathbf{y} \mid \mathbf{x}_{t}))) \Delta_{t}$

Flov

Key Challenge

The likelihood score $\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t)$ is intractable except *t*=0, even for the linear case $\mathbf{y} = \mathbf{A}\mathbf{x}_0 + \mathbf{n}$

Tweedie's formula: (Robbins, 1992; Stein, 1981)

 $\hat{\mathbf{x}}_0(\mathbf{x}_t) := \mathbb{E}[\mathbf{x}_0]$

$$p(\mathbf{y} \mid \mathbf{x}_{0}, \mathbf{x}_{t})p(\mathbf{x}_{0} \mid \mathbf{x}_{t})d\mathbf{x}_{0}$$
Gauss
$$p(\mathbf{y} \mid \mathbf{x}_{0}) \quad p(\mathbf{x}_{0} \mid \mathbf{x}_{t})d\mathbf{x}_{0},$$
intractable!

$$[\mathbf{x}_t] = \frac{1}{\sqrt{\bar{\alpha}(t)}} \left(\mathbf{x}_t + (1 - \bar{\alpha}(t)) \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) \right)$$

40

Key Challenge

The likelihood score $\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t)$ is intractable except *t*=0, even for the linear case $\mathbf{y} = \mathbf{A}\mathbf{x}_0 + \mathbf{n}$

 $p(\mathbf{y} \mid \mathbf{x}_t) =$

Tweedie's formula: (

 $\hat{\mathbf{x}}_0(\mathbf{x}_t) := \mathbb{E}[\mathbf{x}_0]$

Most Popular Solutions

DPS Chung et al. (2022a)

$$p(\mathbf{y} \mid \mathbf{x}_t) \approx \mathcal{N}(\mathbf{A}\hat{\mathbf{x}}_0(\mathbf{x}_t); \sigma_y^2 \mathbf{I})$$

PGDM Song et al. (2022)

 $p(\mathbf{y} | \mathbf{x}_t) \approx \mathcal{N}(\mathbf{A}\hat{\mathbf{x}}_0(\mathbf{x}_t); \gamma_t^2 \mathbf{A}\mathbf{A}^T + \sigma_v^2 \mathbf{I})$

$$p(\mathbf{y} \mid \mathbf{x}_{0}, \mathbf{x}_{t})p(\mathbf{x}_{0} \mid \mathbf{x}_{t})d\mathbf{x}_{0}$$
Gauss
$$p(\mathbf{y} \mid \mathbf{x}_{0}) \quad p(\mathbf{x}_{0} \mid \mathbf{x}_{t})d\mathbf{x}_{0},$$
intractable!

Robbins, 1992; Stein, 1981)
$$[\mathbf{x}_t] = \frac{1}{\sqrt{\bar{\alpha}(t)}} \left(\mathbf{x}_t + (1 - \bar{\alpha}(t)) \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) \right)$$

$$\nabla_{\mathbf{x}_{t}} \log p(\mathbf{y} | \mathbf{x}_{t}) \approx \frac{\partial^{T} \hat{\mathbf{x}}_{0}(\mathbf{x}_{t})}{\partial \mathbf{x}_{t}} \nabla_{\hat{\mathbf{x}}_{0}(\mathbf{x}_{t})} \log \tilde{p}(\mathbf{y} | \hat{\mathbf{x}}_{0}(\mathbf{x}_{t}))$$

The Jacobian needs back-propagation through diffusion models, which is time-consuming

A Simple Alternative Approximation

$$p(\mathbf{y} \mid \mathbf{x}_t) = \int p(\mathbf{y} \mid \mathbf{x}_t) d\mathbf{y}$$

Motivation: Is it possible to obtain a closed-form approximation for $p(\mathbf{x}_0 \mid \mathbf{x}_t)$? $p(\mathbf{x}_0 \mid \mathbf{x}_t) = \frac{p(\mathbf{x}_t \mid \mathbf{x}_0) p(\mathbf{x}_0)}{\int p(\mathbf{x}_t \mid \mathbf{x}_0) p(\mathbf{x}_0) d\mathbf{x}_0}$

One Simple Solution: DMPS

intractable

$$\mathbf{x}_0 p(\mathbf{x}_0 \mid \mathbf{x}_t) d\mathbf{x}_0$$

- **Gaussian Intractable**

$$\mathbf{x}_t \mid \mathbf{x}_0$$
 $p(\mathbf{x}_0)$

closed-form?

A Simple Alternative Approximation

$$p(\mathbf{y} \mid \mathbf{x}_t) = \int p(\mathbf{y} \mid \mathbf{x}_t) d\mathbf{y}$$

Motivation: Is it possible to obtain a closed-form approximation for $p(\mathbf{x}_0 | \mathbf{x}_t)$? $p(\mathbf{x}_0 \mid \mathbf{x}_t) = \frac{p(\mathbf{x}_t \mid \mathbf{x}_0) p(\mathbf{x}_0)}{\left[p(\mathbf{x}_t \mid \mathbf{x}_0)p(\mathbf{x}_0)d\mathbf{x}_0\right]}$

 Assumption 1 The prior $p(\mathbf{x}_0)$ is non-informative w.r.t. $p(\mathbf{x}_t | \mathbf{x}_0)$

$$p(\mathbf{x}_0 | \mathbf{x}_t)$$

Asymptotically accurate when the perturbed noise is negligible

One Simple Solution: DMPS

intractable

$$\mathbf{x}_0 p(\mathbf{x}_0 \mid \mathbf{x}_t) d\mathbf{x}_0$$

- **Gaussian Intractable**

$$\mathbf{x}_t \mid \mathbf{x}_0$$
 $p(\mathbf{x}_0)$

closed-form?

$$\mathbf{x}_{t} = \frac{\mathbf{Gaussian}}{\mathbf{x}_{t} | \mathbf{x}_{0}}$$

Closed-Form Gaussian Approximation

A Simple Alternative Approximation

Assumption 1 is asymptotically accurate when the perturbed noise is negligible, i.e., t is small

A Toy Example with a Gaussian $p(x_0)$

Closed-form noise-perturbed likelihood score $\nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t)$

Theorem 1. (noise-perturbed pseudo-likelihood score, DDPM) For DDPM, under Assumption , the noise-perturbed likelihood score $\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t)$ for $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$ in (1) admits a closed-form

$$\begin{aligned} \nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t) &\simeq \nabla_{\mathbf{x}_t} \log \tilde{p}(\mathbf{y} \mid \mathbf{x}_t) \\ = & \frac{1}{\sqrt{\bar{\alpha}_t}} \mathbf{A}^T \Big(\sigma^2 \mathbf{I} + \frac{1 - \bar{\alpha}_t}{\bar{\alpha}_t} \mathbf{A} \mathbf{A}^T \Big)^{-1} \Big(\mathbf{y} - \frac{1}{\sqrt{\bar{\alpha}_t}} \mathbf{A} \mathbf{x}_t \Big). \end{aligned}$$

Efficient Computation via SVD

score $\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t)$ in (10) of Theorem 1 can be equivalently computed as $\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t) \simeq \nabla_{\mathbf{x}}$ $= \frac{1}{\sqrt{\pi}} \mathbf{V} \mathbf{\Sigma} \Big(\sigma^2 \mathbf{I} + \frac{1 - \bar{\alpha}}{\pi} \Big)$ $\sqrt{\alpha_t}$ \bar{lpha}_t where $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ is the SVD of \mathbf{A} and $\mathbf{\Sigma}^2$ denotes element-wise square of $\mathbf{\Sigma}$. (10)

Theorem 2. (efficient computation via SVD) For DDPM, the noise-perturbed pseudo-likelihood

$$rac{1}{2} \log ilde{p}(\mathbf{y} \mid \mathbf{x}_t) \ rac{1}{2} \sum_{t=1}^{\infty} \mathbf{\Sigma}^{2} \int_{0}^{-1} \left(\mathbf{U}^T \mathbf{y} - rac{1}{\sqrt{ar{lpha}_t}} \mathbf{\Sigma} \mathbf{V}^T \mathbf{x}_t
ight),$$

Resultant DMPS Algorithm

Algorithm 1 DMPS (DDPM version) **Input:** y, A, σ_{y}^{2} , $\{\tilde{\sigma}_{t}\}_{t=1}^{T}$, λ Initialization: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ 1 for t = T to 1 do Draw $\mathbf{z}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2 $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \mathbf{s}_{\theta}(\mathbf{x}_t, t) \right) + \tilde{\sigma}_t \mathbf{z}_t$ 3 $\nabla_{\mathbf{x}_t} \log \tilde{p}(\mathbf{y}|\mathbf{x}_t)$ 4 $= \frac{1}{\sqrt{\bar{lpha}_t}} \mathbf{V} \mathbf{\Sigma} \Big(\sigma_y^2 \mathbf{I} + \frac{1 - \bar{lpha}_t}{\bar{lpha}_t} \mathbf{\Sigma}^2 \Big)^{-1} \mathbf{U}^T \big(\mathbf{y} - \mathbf{U}^T \big)^{-1} \mathbf{U}^T \big(\mathbf{y} - \mathbf{z}^T \big)^{-1} \mathbf{U}^T \big(\mathbf{z}^T \big)^{ \frac{1}{\sqrt{\bar{\alpha}_t}}\mathbf{A}\mathbf{x}_t$ $\mathbf{x}_{t-1} = \mathbf{x}_{t-1} + \lambda \frac{1-\alpha_t}{\sqrt{\alpha_t}} \nabla_{\mathbf{x}_t} \log \tilde{p}(\mathbf{y}|\mathbf{x}_t)$ **Output:** \mathbf{x}_0

Algorithm 2 DMPS (flow-based version) Input: y, A, σ_v^2 , $\Delta_t = 1/T$, λ Initialization: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ 6 for t = T to 1 do $\mathbf{x}_{t-1} = \mathbf{x}_t - \mathbf{v}_{\boldsymbol{\theta}}(\mathbf{x}_t, t) \Delta_t$ 7 $\nabla_{\mathbf{x}_t} \log \tilde{p}(\mathbf{y}|\mathbf{x}_t)$ 8 $= rac{1}{a_t} \mathbf{V} \mathbf{\Sigma} \Big(\sigma_y^2 \mathbf{I} + rac{b_t^2}{a_t^2} \mathbf{\Sigma}^2 \Big)^{-1} \mathbf{U}^T \big(\mathbf{y} - \mathbf{U}^T \big)^{-1} \mathbf{U}^T \big(\mathbf{U}^T \big)^{ \frac{1}{\sqrt{\bar{\alpha}_t}}\mathbf{A}\mathbf{x}_t$ 9 $\mathbf{x}_{t-1} = \mathbf{x}_{t-1} - \lambda \frac{b_t(\dot{a}_t b_t - a_t \dot{b}_t)}{a_t} \log \tilde{p}(\mathbf{y}|\mathbf{x}_t) \Delta_t$ **Output:** \mathbf{x}_0

Experiments Results

Dataset: FFHQ

DDPM Version

(c) colorization

(d) Deblurring (uniform)

Experiments Results

Dataset: CelebA-HQ

Flow-based Version

Super resolution Measurement

DPS Inference Time: 8.02 s

Deblurring (Gauss)

Colorization

1.2.

Denoising

One Simple Solution: DMPS

OT-ODE Inference Time: 6.40 s

DMPS (ours) InferenceTime: 4.34 s

Ground Truth

Experiments Results

Dataset: 256x 256 FFHQ

Results of DDPM Version

	super-resolution			deblur			colorization			denoising		
Method	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	L
DMPS (DDPM, ours)	27.63	0.8450	0.2071	27.26	0.7644	0.2222	21.09	0.9592	0.2738	27.81	0.8777	C
DPS (DDPM)	26.78	0.8391	0.2329	26.50	0.8151	0.2248	11.53	0.7923	0.5755	27.22	0.8969	C
PGDM	27.60	0.8345	0.2077	26.65	0.7458	0.2196	12.15	0.8920	0.3969	27.60	0.8682	0

Dataset: 256x 256 CelebA-HQ

10	super-resolution			deblur			colorization			denoising		
Method	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	L
DMPS (Flow-based, ours)	28.29	0.8011	0.2329	26.21	0.7235	0.2637	23.31	0.8861	0.2901	29.04	0.8166	0
DPS (Flow-based) OT-ODE	28.05 27.71	0.7754 0.7657	0.2266 0.2302	22.64 25.84	0.5787 0.7084	0.3403 0.2573	20.92 21.67	0.8061 0.8696	0.3335 0.3094	27.93 22.76	0.7465 0.3820	0 0

Results of Flow-based Version

Experiments Results

Running Time of DDPM Version

Method	Inference Time [s]				
DMPS (DDPM, ours)	67.02				
DPS (DDPM)	194.42				
PGDM	182.35				

The proposed DMPS is 2-3 times faster than DPS and PGDM (OT-ODE, flow version) while achieving comparable or even better reconstruction performances

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Diffusion Model Based Posterior Sampling for Noisy Linear Inverse Problems." arXiv preprint arXiv:2211.12343v3, 2024

Code: <u>https://github.com/mengxiangming/dmps</u>

Running Time of Flow-based Version

Method	Inference Time [s]				
DMPS (flow-based, ours)		4.45			
DPS (flow-based)		8.04			
OT-DOE		6.44			

1. Image Restoration and Diffusion Models 2. Linear Image Restoration with DM 3. Nonlinear Image Restoration with DM

Contents

Nonlinear Image Restoration

Nonlinear Image Restoration

• Nonlinear Case: $f(\mathbf{x})$ is nonlinear transformation

Quantized CS with Diffusion Models

Basic Idea

QCS-SGM: Quantized CS with SGM Two Assumptions of QCS-SGM

$$p(\mathbf{y} \mid \mathbf{x}_t) = \int_{\mathbf{non-Gauss}} p(\mathbf{y} \mid \mathbf{x}_0, \mathbf{x}_t) p(\mathbf{x}_0 \mid \mathbf{x}_t) d\mathbf{x}_0$$

=
$$\int_{\mathbf{p}(\mathbf{y} \mid \mathbf{x}_0)} p(\mathbf{x}_0 \mid \mathbf{x}_t) d\mathbf{x}_0,$$

Assumption 1

The prior $p(\mathbf{X}_0)$ is non-informative w.r.t. $p(\mathbf{X}_t | \mathbf{X}_0)$

$$p(\mathbf{x}_t | \mathbf{x}_0)$$

Assumption 2

The sensing matrix **A** is row-orthogonal, i.e.,

$$\mathbf{A}\mathbf{A}^T = \mathsf{Diag}$$

(Approximately) satisfied by many popular CS matrices e.g., DFT, DCT, Hadamard, and random Gaussian matrices, etc.

More difficult to obtain closed-form approximation

Unlike linear case, Assumption 1 alone does not yield closed-form $p(\mathbf{y} \mid \mathbf{x}_t)$

gonal matrix

QCS-SGM: Quantized CS with SGM Results of Pseudo-likelihood Score

• Theorem 1: Under assumptions 1 and 2, we obtain a closed-form solution to the likelihood score

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t) = \mathbf{A}^T \mathbf{G}(\beta_t, \mathbf{y}, \mathbf{A}, \mathbf{x}_t)$$

where

 $\mathbf{G}(\beta_t, \mathbf{y}, \mathbf{A}, \mathbf{x}_t) = [g_1, g_2, \dots, g_M]^T \in \mathbb{R}^{M \times 1}$ $g_m = \frac{\exp\left(-\frac{\tilde{u}_{y_m}^2}{2}\right) - \exp\left(-\frac{\tilde{l}_{y_m}^2}{2}\right)}{\sqrt{\sigma^2 + \beta_t^2 \| \mathbf{a}_m^T \|_2^2} \int_{\tilde{l}_{y_m}}^{\tilde{u}_{y_m}} \exp\left(-\frac{t^2}{2}\right) dt} \qquad \tilde{u}_{y_m}$

• Corollary: In the special case of standard CS

$$\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t) = \mathbf{A}^T (\sigma^2 \mathbf{I} + \beta_t^2 \mathbf{A} \mathbf{A}^T)^{-1} (\mathbf{y} - \mathbf{A} \mathbf{x}_t)$$

✓ Explain the necessity of annealing term in Jalal et al. (202 $\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t) = -$

✓ Extend and improve Jalal et al. (2021a) in the general case

$${}_{m} = \frac{\mathbf{a}_{m}^{T}\mathbf{x}_{t} - u_{y_{m}}}{\sqrt{\sigma^{2} + \beta_{t}^{2} \| \mathbf{a}_{m}^{T} \|_{2}^{2}}} \quad \tilde{l}_{y_{m}} = \frac{\mathbf{a}_{m}^{T}\mathbf{x}_{t} - l_{y_{m}}}{\sqrt{\sigma^{2} + \beta_{t}^{2} \| \mathbf{a}_{m}^{T} \|_{2}^{2}}}$$

$$\frac{\mathbf{A}^{T}(\mathbf{y} - \mathbf{A}\mathbf{x}_{t})}{\sigma^{2} + \gamma_{t}^{2}}$$

QCS-SGM: Quantized CS with SGM

Resultant Algorithm

Algorithm 1: Quantized Compressed Ser

 Input:
$$\{\beta_t\}_{t=1}^T$$
, ϵ , K , \mathbf{y} , \mathbf{A} , σ^2 , quantizat

 Initialization: $\mathbf{x}_1^0 \sim \mathcal{U}(0, 1)$

 1 for $t = 1$ to T do

 2
 $\alpha_t \leftarrow \epsilon \beta_t^2 / \beta_T^2$

 3
 for $k = 1$ to K do

 4
 Draw $\mathbf{z}_t^k \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

 5
 6

 6
 $\mathbf{x}_t^k = \mathbf{x}_t^{k-1} + \alpha_t \left[\mathbf{s}_{\theta}(\mathbf{x}_t^{k-1}, \beta_t) + \mathbf{x}_t^K \right]$

 7
 $\mathbf{x}_{t+1}^0 \leftarrow \mathbf{x}_t^K$

 Output: $\hat{\mathbf{x}} = \mathbf{x}_T^K$

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Quantized Compressed Sensing with Score-Based Generative Models." ICLR 2023

Code: https://github.com/mengxiangming/QCS-SGM

nsing with SGM (QCS-SGM)

tion codewords Q and thresholds $\{[l_q, u_q) | q \in Q\}$

QCS-SGM: Quantized CS with SGM

Experimental Results

1-bit CS on MNIST 28×28

The proposed QCS-SGM achieves remarkably better performances

1-bit CS on CelebA 64×64 **Ground Truth** L'ruth ISSO-DC1 CSGM BIPG OneShot

QCS-SGM: Quantized CS with SGM

Experimental Results

(a) Ground Truth

(c) 2-bit, M = 6144

Results of QCS-SGM on CelebA in the fixed budget case $(Q \times M = 12288)$

(b) 1-bit, M = 12288

(d) 3-bit, M = 4096

58

QCS-SGM: Quantized CS with SGM Experimental Results FFHQ 256×256 high-resolution images

1-bit

 $M = \frac{1}{8}N$

PSNR: 11.64 dB, SSIM: 0.500 PSNR: 24.18 dB, SSIM: 0.695

> The proposed QCS-SGM can well recover high-resolution image from only a few low-resolution (1,2,3-bit) quantized measurements

Compression Ratio $\frac{M}{N} = \frac{1}{8} \ll 1$

3-bit

PSNR: 26.71 dB, SSIM: 0.753

Limitation of QCS-SGM

QCS-SGM is limited to (approximately) row-orthogonal matrices A

Why? The pseudo-likelihood is otherwise intracta

 $p(\mathbf{y}|\mathbf{x}_t) \simeq \tilde{p}(\mathbf{y}|\mathbf{z}_t = \mathbf{A}\mathbf{x}_t) =$

$$\begin{split} \mathbf{C}_t^{-1} &= \sigma^2 \mathbf{I} + \beta_t^2 \mathbf{A} \mathbf{A}^T \\ (z_{t,m} + \tilde{n}_{t,m}) \in \mathsf{Q}^{-1}(y_m) \big) \mathcal{N}(\tilde{\mathbf{n}}_t; \mathbf{0}, \mathbf{C}_t^{-1}) d\tilde{\mathbf{n}}_t \end{split}$$

Intractable integration

A New Perspective

Partition Function (normalization term)

A New Perspective

 \blacksquare QCS-SGM+

Algorithm 1: QCS-SGM+ Initialization: $\mathbf{x}_{1}^{0} \sim \mathcal{U}(0, 1)$ 1 for t = 1 to T do $\alpha_t \leftarrow \epsilon \beta_t^2 / \beta_T^2$ 2 for k = 1 to K do 3 Draw $\mathbf{z}_{t}^{k} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 4 Initialization: h^F, τ^F, h^G, τ^G for it = 1 to IterEP do 5 $egin{aligned} oldsymbol{h}^G &= rac{oldsymbol{m}^a}{\chi^a} - oldsymbol{h}^F \ au^G &= rac{1}{\chi^a} - au^F \end{aligned}$ 6 7 $egin{aligned} oldsymbol{h}^F &= rac{oldsymbol{m}^b}{\chi^b} - oldsymbol{h}^G \ au^F &= rac{1}{\chi^b} - au^G \end{aligned}$ 8 9 Compute $\nabla_{\mathbf{x}_t} \log p_{\beta_t}(\mathbf{y} \mid \mathbf{x}_t)$ as (11) 10 $\mathbf{x}_t^k = \mathbf{x}_t^{k-1} + lpha_t \Big[\mathbf{s}_{oldsymbol{ heta}}(\mathbf{x}_t^{k-1},eta_t) + \gamma
abla_2$ 11 $\mathbf{x}_{t+1}^0 \leftarrow \mathbf{x}_t^K$ 12 **Output:** $\hat{\mathbf{x}} = \mathbf{x}_T^K$

Generative Models." (AAAI 2024)

Code: https://github.com/mengxiangming/QCS-SGM-plus

Input: $\{\beta_t\}_{t=1}^T, \epsilon, \gamma, IterEP, K, \mathbf{y}, \mathbf{A}, \sigma^2$, quantization thresholds $\{[l_q, u_q) | q \in \mathcal{Q}\}$

$$\left|\mathbf{x}_{t} \log p_{\beta_{t}}(\mathbf{y} \mid \mathbf{x}_{t})\right| + \sqrt{2\alpha_{t}} \mathbf{z}_{t}^{k}$$

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "QCM-SGM+: Improved Quantized Compressed Sensing With Score-Based

General Matrices

(a) ill-conditioned matrices

$\mathbf{A} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^{\mathbf{T}}$

 ${\bf V}$ and ${\bf U}$ are independent Harr-distributed matrices nonzero singular values of A satisfy $\frac{\lambda_i}{\lambda_{i+1}} = \kappa^{1/M}$, where κ is the condition number.

(b) correlated matrices

 $\mathbf{A} = \mathbf{R}_L \mathbf{H} \mathbf{R}_R$ where $\mathbf{R}_L = \mathbf{R}_1^{\frac{1}{2}} \in \mathbb{R}^{M \times M}$ and $\mathbf{R}_R = \mathbf{R}_2^{\frac{1}{2}} \in \mathbb{R}^{N \times N}$, $\mathbf{H} \in \mathbb{R}^{M \times N}$ is a random matrix The (i, j) th element of both R1 and R2 is $\rho^{|i-j|}$ and ρ is termed the correlation coefficient

1-bit CS on MNIST and CelebA for ill-conditioned A ($\kappa = 10^3$ for MNIST and $\kappa = 10^6$ for CelebA)

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods.

(b) 1-bit CS with correlated $\mathbf{A}, \rho = 0.4, M = 400, \sigma = 0.1$

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM and other methods.

Truth

QCS-SGM+

QCS-SGM

1-bit CS on CelebA for ill-conditioned A ($\kappa = 10^6$ for CelebA), $M = 4000 \ll N, \sigma = 0.1$

It can be seen that QCS-SGM+ apparently outperforms the original QCS-SGM.

68

Image Restoration (linear and nonlinear) with Diffusion Models

- Linear case: DMPS for general noisy linear inverse problems
- Nonlinear case: QCS-SGM/QCS-SGM+ for quantized compressed sensing

For more details, please refer to my personal page (个人主页): https://mengxiangming.github.io/

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Diffusion Model Based Posterior Sampling for Noisy Linear Inverse Problems." *arXiv preprint arXiv:2211.12343v2*(2023)

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "Quantized Compressed Sensing with Score-Based Generative Models." ICLR 2023

Paper: Meng, Xiangming, and Yoshiyuki Kabashima. "QCM-SGM+: Improved Quantized Compressed Sensing With Score-Based Generative Models." AAAI 2024

Code: <u>https://github.com/mengxiangming/dmps</u>

Code: <u>https://github.com/mengxiangming/QCS-SGM</u>

Code: <u>https://github.com/mengxiangming/QCS-SGM-plus</u>

Summary

Thank you! Q&A